K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7

a) \(\dfrac{12}{5}>\dfrac{10}{5}=2=\dfrac{4}{2}>\dfrac{3}{2}\) (Số 2 làm trung gian)

Hay \(\dfrac{12}{5}>\dfrac{3}{2}\)

b) Ta có: 

`2023 < 2024 =>` \(\dfrac{2023}{2024}< 1\)

`2026 > 2025 =>` \(\dfrac{2026}{2025}>1\)

=> \(\dfrac{2023}{2024}< 1< \dfrac{2026}{2025}\) (1 làm trung gian)

Hay \(\dfrac{2023}{2024}< \dfrac{2026}{2025}\)

a: \(\dfrac{12}{5}=2,4;\dfrac{3}{2}=1,5\)

mà 2,4>1,5

nên \(\dfrac{12}{5}>\dfrac{3}{2}\)

b: \(\dfrac{2023}{2024}< \dfrac{2024}{2024}=1;\dfrac{2026}{2025}>\dfrac{2025}{2025}=1\)

Do đó: \(\dfrac{2023}{2024}< \dfrac{2026}{2025}\)

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BH\cdot BC=BA^2\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE~ΔACB

27 tháng 7

đéo

 

a: Xét (O) có

ΔCMD nội tiếp

CD là đường kính

Do đó:ΔCMD vuông tại M

=>DM\(\perp\)CF tại M

b: Xét (O) có AB,CD là các đường kính và AB\(\perp\)CD tại O

nên \(sđ\stackrel\frown{CA}=sđ\stackrel\frown{CB}=sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD}\)

Xét (O) có \(\widehat{MNB}\) là góc có đỉnh ở bên trong đường tròn chắn hai cung MB,AD

=>\(\widehat{MNB}=\dfrac{1}{2}\left(sđ\stackrel\frown{MB}+sđ\stackrel\frown{AD}\right)=\dfrac{1}{2}\left(sđ\stackrel\frown{MB}+sđ\stackrel\frown{BD}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{MD}\)

Xét (O) có

\(\widehat{DME}\) là góc tạo bởi tiếp tuyến ME và dây cung MD

=>\(\widehat{DME}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MD}\)

=>\(\widehat{DME}=\widehat{MNB}\)

=>ΔENM cân tại E

Ta có: \(\widehat{EMN}+\widehat{EMF}=\widehat{FMN}=90^0\)

\(\widehat{ENM}+\widehat{EFM}=90^0\)(ΔNMF vuông tại M)

mà \(\widehat{ENM}=\widehat{EMN}\)

nên \(\widehat{EMF}=\widehat{EFM}\)

=>ΔEFM cân tại E

Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}\)

=>\(\dfrac{AC}{AB}=\sqrt{3}\)

=>\(\dfrac{AC^2}{AB^2}=3\)

=>\(AC^3=3AB^2\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(4\cdot AB^2=2^2=4\)

=>\(AB^2=1\)

=>AB=1(cm)

=>\(AC=1\cdot\sqrt{3}=\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(\dfrac{AC}{15}=\dfrac{3}{5}\)

=>\(AC=15\cdot\dfrac{3}{5}=9\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)

26 tháng 7

Tam giác `ABC` vuông tại `A`

`=> AC =  BC . sinB = 15 . 3/5 = 9 (cm)`

Và `AB =` \(\sqrt{BC^2-AC^2}=\sqrt{15^2-9^2}=\sqrt{144}=12\) `(cm)`

Xét ΔAHC vuông tại H có \(tanC=\dfrac{AH}{HC}\)

=>\(\dfrac{8}{HC}=tan45=1\)

=>HC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB\cdot8=8^2\)

=>HB=8(cm)

BC=BH+CH=8+8=16(cm)

ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(AC=\sqrt{8^2+8^2}=8\sqrt{2}\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(AB=\sqrt{8^2+8^2}=8\sqrt{2}\left(cm\right)\)