K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

Hình như bạn viết đề hơi ngược  mình nghĩ là :

Cho a,b,c khác 0 Chứng minh rằng : \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

Áp dụng BĐT AM - GM ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2.\frac{a}{c}\)

Tương tự có : \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\cdot\frac{b}{a}\)\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\cdot\frac{c}{b}\)

Khi đó : \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

Hay : \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

10 tháng 3 2020

ミ★NVĐ^^★彡a,b,c đã cho ko âm đâu???

10 tháng 3 2020

nhầm, 2.1,5 = 3, diện tích = 3 nhé :v

10 tháng 3 2020

A B C M E F N

a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90

=> BEMF là hình chữ nhật (dh)

b, MF _|_ BA

BC _|_ AB

=> MF // BC 

M là trung điểm của AC (gt)

=> MF là đường trung bình của tam giác ABC (đl)

=> F là trung điểm của AB

F Là trung điểm của MN 

=> BMAN là hình bình hành (dh)

MN _|_ AB

=> BMAN là hình thoi (dh)

c, MF là đtb của tam giác ABC (câu a) 

=> MF = BC/2 ; BC = 4 (Gt)

=> MF = 2

tương tự tính ra BF = 1,5

=> S BEMF = 4.1,5 = 6

Lời giải:

Thực hiện phép biến đổi tương đương:

Ta có: a3+b3+abcab(a+b+c)a3+b3+abc≥ab(a+b+c)

a3+b3+abcab(a+b+c)0⇔a3+b3+abc−ab(a+b+c)≥0

a3+b3ab(a+b)0⇔a3+b3−ab(a+b)≥0

a2(ab)b2(ab)0⇔a2(a−b)−b2(a−b)≥0

(a2b2)(ab)0⇔(a2−b2)(a−b)≥0

(ab)2(a+b)0⇔(a−b)2(a+b)≥0 (luôn đúng với mọi $a,b$ dương )

Do đó ta có đpcm.

Dấu bằng xảy ra khi a=b

10 tháng 3 2020

Với a,b > 0 ta có BĐT :

\(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy : BĐT tương đương :

\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) ( đúng )

Áp dụng vào bài toán ta có :

\(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

10 tháng 3 2020

(x - y)^2 + (y - z)^2 + (z - x)^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 =  4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz =  4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 4(x^2 + y^2 + z^2 - xy - yz - zx)

<=>  2(x^2 + y^2 + z^2 - xy - yz - zx) = 0

<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 0

<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) = 0

<=> (x - y)^2 + (y - z)^2 + (z - x)^2 = 0

<=> x - y = 0 và y - z = 0 và z - x = 0

<=> x = y và y = z và z = x

<=> x = y = z

a. ĐKXĐ: x \(\ne\pm3\)

b. M = \(\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}\)

\(\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\) = \(\frac{9+6x+x^2}{\left(x-3\right)\left(x+3\right)}\)\(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{x+3}{x-3}\)

c. M = 0 hay \(\frac{x+3}{x-3}=0\) => x + 3 = 0 <=> x = -3 (Loại)

12 tháng 3 2020

a) ĐK : x khác 2/3 ; x khác 0

\(\frac{x+5}{3x-2}=\frac{A}{x\left(3x-2\right)}\)

\(\Leftrightarrow\frac{x\left(x+5\right)}{x\left(3x-2\right)}=\frac{A}{x\left(3x-2\right)}\)

\(\Leftrightarrow A=x^2+5x\)

b) \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)

\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\frac{2\left(2-x\right)}{\left(x+2\right)}\)

\(=\frac{-5}{2}\)

10 tháng 3 2020

tham khảo nek:

https://h.vn/hoi-dap/question/210735.html

# mui #

Chiều dài mpn lak 3m . Lực td lak 250 N lak lực nào m ???

10 tháng 3 2020

4x>2x5

Giá trị nào sau đây là nghiệm của bất phương trình −4x>−2x−5−4x>−2x−5

A. x=3

B. x=4

C. x=72x

D. x=2

ĐA : D

Ta có \(9\cdot\cdot\cdot564.6=1092877\cdot\)

mà \(6.4=24\)

\(\Rightarrow\)\(\cdot=4\)