Cho a,b,c > 0 và \(\frac{a^2b}{c}+\frac{b^2c}{a}+\frac{c^2a}{b}=3\)CMR : \(\frac{a^6}{b^3}+\frac{b^6}{c^3}+\frac{c^6}{a^3}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(1+\frac{a}{x}=1+\frac{x+y+z}{x}=\frac{2x+y+z}{x}\)
Áp dụng BĐT cosi \(x+x+y+z\ge4\sqrt[4]{x^2yz}\)
=> \(1+\frac{a}{x}\ge\frac{4\sqrt[4]{x^2yz}}{x}\)
Tương tự\(1+\frac{a}{y}\ge\frac{4\sqrt[4]{y^2xz}}{y}\); \(1+\frac{a}{z}\ge\frac{4\sqrt[4]{z^2yx}}{z}\)
=> \(Q\ge\frac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)
MinQ=64 khi \(x=y=z=\frac{a}{3}\)
Ta có \(A=\frac{3x+4}{x^2+1}\)
=> \(Ax^2-3x+A-4=0\)
+ \(A=0\)
=> \(x=-\frac{4}{3}\)
+ \(A\ne0\)=> \(x\ne-\frac{4}{3}\)
=> \(\Delta=9-4A\left(A-4\right)\ge0\)
=> \(4A^2-16A-9\le0\)
=> \(-\frac{1}{2}\le A\le\frac{9}{2}\)
=> \(MinA=-\frac{1}{2}\)khi x=-3(TM \(x\ne\frac{-4}{3}\))
\(Max=\frac{9}{2}\)khi \(x=\frac{1}{3}\)(TM \(x\ne-\frac{4}{3}\))
Cho tam giác ABC nhọn, p là nửa chu vi, S là diện tích
CMR: \(\cot A+\cot B+\cot C\ge\frac{p^2}{3S}\)
\(cotA+cotB+cotC\ge\frac{p^2}{3S}\)
<=> \(cotA.S+cotB.S+cotC.S\ge\frac{p^2}{3}\)
MÀ \(S=\frac{1}{2}ab.sinC=\frac{1}{2}bc.SinA=\frac{1}{2}ac.SinB\)
=> \(\frac{1}{2}bc.cosA+\frac{1}{2}ab.cosC+\frac{1}{2}ac.cosC\ge\frac{p^2}{3}\)
Áp dụng công thức hàm cos ta có \(cosA=\frac{b^2+c^2-a^2}{2bc};cosB=\frac{a^2+c^2-b^2}{2ac};cosC=\frac{b^2+a^2-c^2}{2ab}\)
ĐPCM
<=> \(\frac{1}{4}\left(a^2+b^2-c^2\right)+\frac{1}{4}\left(b^2+c^2-a^2\right)+\frac{1}{4}\left(a^2+c^2-b^2\right)\ge\frac{\left(\frac{a+b+c}{2}\right)^2}{3}\)
<=> \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> ĐPCM
Dấu bằng xảy ra khi a=b=c => Tam giác ABC đều
Vậy \(cotA+cotB+cotC\ge\frac{p^2}{3S}\)
Gọi AH,BK,CL là 3 đường cao của \(\Delta\)ABC. Khi đó:
\(\cot B=\frac{BH}{HA},\cot C=\frac{CH}{HA}\) suy ra \(\cot B+\cot C=\frac{BC}{HA}\)
Chứng minh tương tự rồi cộng theo vế ta được:
\(2\left(\cot A+\cot B+\cot C\right)=\frac{BC}{HA}+\frac{CA}{KB}+\frac{AB}{LC}\)
\(=\frac{BC^2}{2S}+\frac{CA^2}{2S}+\frac{AB^2}{2S}\ge\frac{\left(BC+CA+AB\right)^2}{6S}=\frac{2p^2}{3S}\)(BĐT Schwartz)
Do đó \(\cot A+\cot B+\cot C\ge\frac{p^2}{3S}\)(đpcm).
Dấu "=" xảy ra khi và chỉ khi tam giác ABC là tam giác đều.
Áp dụng Cô si cho 2 số không âm ta có:
\(\hept{\begin{cases}\frac{a}{b^2}+\frac{1}{a}\ge\frac{2}{b}\\\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\\\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\end{cases}}\)\(\Rightarrow\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Rightarrow\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
dâu = xảy ra khi a=b=c
ĐKXĐ : \(x^3+x^2+6\ge0\)
\(pt\Leftrightarrow x^2+x+9=6+x^2+x^3\)
\(\Leftrightarrow x^3-x-3=0\)
Đến đây có lẽ dùng công thức Cardano là ra , nhưng mà không biết bạn học Cardano chưa nhỉ ?
\(A=x-\sqrt{x}\) \(\left(ĐKXĐ:x\ge0\right)\)
\(A=x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(A=\left(x-\frac{1}{2}\right)^2\) \(-\frac{1}{4}\)
Có \(\left(x-\frac{1}{2^2}\right)\ge0\forall x\ge0\)
\(\left(x-\frac{1}{2}\right)^2\) - 1/4 >= \(\frac{-1}{4}\)mọi x>=0
Dấu = sảy ra \(\Leftrightarrow\) x- \(\frac{1}{2}\) = 0
\(\Leftrightarrow\) x = 1 / 2 ( t/m )
vậy A đạt GTNN là -1/4 tại x = 1/2
Tớ nhầm nhé \(x\) từ dòng thứ 3 xuống pahir thay =\(\sqrt{x}\)
\(A=\frac{3-4x}{2x^2+2}\)
\(\Leftrightarrow2Ax^2+2A=3-4x\)
\(\Leftrightarrow2Ax^2+4x+2A-3=0\)
*Nếu A = 0 thì \(x=\frac{3}{4}\)
*Nếu A # 0 thì pt trên là pt bậc 2
Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow4-2A\left(2A-3\right)\ge0\)
\(\Leftrightarrow4-4A^2+6A\ge0\)
\(\Leftrightarrow-\frac{1}{2}\le A\le2\)
Vì \(-\frac{1}{2}< 0\Rightarrow\hept{\begin{cases}A_{min}=-\frac{1}{2}\Leftrightarrow x=...\\A_{max}=2\Leftrightarrow x=...\end{cases}}\)(CHỗ ... là tự làm nhé)
Áp dụng BĐT cosi ta có
\(\frac{a^6}{b^3}+\frac{b^6}{c^3}+1\ge3\sqrt[3]{\frac{a^6.b^3}{c^3}}=\frac{3a^2b}{c}\)
\(\frac{b^6}{c^3}+\frac{c^6}{a^3}+1\ge\frac{3b^2c}{a}\)
\(\frac{c^6}{a^3}+\frac{a^6}{b^3}+1\ge\frac{3c^2a}{b}\)
Cộng 3 bĐt trên
=> \(2.VT+3\ge3\left(\frac{a^2b}{c}+\frac{b^2c}{a}+\frac{c^2a}{b}\right)=9\)
=> \(VT\ge3\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1