K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

\(y=f\left(x\right)=x^3+2x\)

Theo bài ra ta có : \(f\left(x\right)=0\)

hay \(x^3+2x=0\Leftrightarrow x\left(x^2+2\right)=0\)

TH1 : \(x=0\)

TH2 : \(x^2+2=0\Leftrightarrow x^2=-2\)vô lí 

vì \(x^2\ge0\forall x;-2< 0\)

Vậy x = 0 f(x) nhận giá trị 0 

24 tháng 1 2021

Để \(f\left(x\right)=0\)thì \(x^3+2x=0\)\(\Rightarrow x\left(x^2+2\right)=0\)

Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+2\ge2\forall x\)\(\Rightarrow x=0\)

Vậy với \(x=0\)thì \(y=f\left(x\right)=0\)

24 tháng 1 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=\frac{x^2+y^2-z^2}{5^2+7^2-3^2}=\frac{585}{65}=9\)

\(x=45;y=63;z=27\)

24 tháng 1 2021

Từ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)(1)\(\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{3}\right)^2=\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

\(\Rightarrow x^2=25.9=225\)\(\Rightarrow x=\pm15\)

\(y^2=49.9=441\)\(\Rightarrow y=\pm21\)

\(z^2=9.9=81\)\(\Rightarrow z=\pm9\)

Từ (1) \(\Rightarrow x,y,z\)phải có cùng dấu âm hoặc dương

Vậy \(\left(x;y;z\right)=\left(-15;-21;-9\right),\left(15;21;9\right)\)

24 tháng 1 2021

                              A B C H

Kẻ \(AH\perp BC\)

Xét \(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\)\(\Rightarrow\widehat{BAH}=90^o-60^o=30^o\)

Áp dụng nhận xét: trong 1 tam giác vuông, cạnh đối diện với góc \(30^o\)bằng \(\frac{1}{2}\)cạnh huyền

Ta có: \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=30^o\)

\(\Rightarrow BH=\frac{1}{2}AB=\frac{1}{2}.5=2,5\)( cm )

\(\Rightarrow CH=BC-BH=8-2,5=5,5\)( cm )

Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2=AB^2-BH^2=5^2-2,5^2=18,75\)

Xét \(\Delta ACH\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)

\(\Rightarrow AC^2=18,75+5,5^2=18,75+30,25=49\)

\(\Rightarrow AC=7cm\)

Vậy \(AC=7cm\)

24 tháng 1 2021

Ta có (2x + 1 - x2) + 4x3 + x2 - 1

= 2x + 1 - x2 + 4x3 + x2 - 1

= 4x3 + (x2 - x2) + 2x + (1 - 1)

= 4x3 + 2x (1)

Thay x = -2 vào (1) ta được

4x3 + 2x = 4.(-2)3 + 2.(-2) = -32 + (-4) = -36

24 tháng 1 2021

\(\left(2x+1-x^2\right)+\left(4x^3+x^2-1\right)\)

Thay x = -2 ta được : 

\(\left(-2.2+1-\left(-2\right)^2\right)+\left(4\left(-2\right)^3+\left(-2\right)^2-1\right)\)

\(=-4+1-4-32+4-1=-36\)

Em tự kẻ hình nhé

a) Vì \(Oz\)là phân giác của \(\widehat{xOz}=\widehat{yOz}\)

Hay \(\widehat{AOI}=\widehat{BOI}\)

Xét \(\Delta AOI\)và \(\Delta BOI\),có:

\(\hept{\begin{cases}OA=OB\left(gt\right)\\AOI=BOI\left(cmt\right)\\OI:chung\end{cases}}\)

\(\Rightarrow\Delta AOI=\Delta BOI\left(c.g.c\right)\)

b)Vì \(\Delta AOI=\Delta BOI\left(c.g.c\right)\)

\(\Rightarrow AI=BI\)(2 cạnh tương ứng )

\(\Rightarrow I\)thuộc đường trung trực của \(AB\left(1\right)\)

Vì \(OA=OB\Rightarrow O\)thuộc đường trung trực của \(AB\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow OI\)là đường trung trực của \(AB\)

\(\Rightarrow AB\perp OI\)

c)Xét \(\Delta MOC\)vuông tại \(M\)và \(\Delta NOC\)vuông tại \(N\), có:

\(\hept{\begin{cases}OC:chung\\\widehat{COM}=\widehat{CON}\end{cases}}\)

\(\Rightarrow\Delta MOC=\Delta NOC\left(ch.gn\right)\)

\(\Rightarrow CM=CN\)(2 cạnh tương ứng)

d) Cách 1: 

Vì \(OM=ON\Rightarrow O\)thuộc đường trung trực của \(MN\left(3\right)\)

Vì \(CM=CN\left(cmt\right)\Rightarrow C\)thuộc đường trung trực của \(MN\left(4\right)\)

Từ \(\left(3\right)\)và \(\left(4\right):\Rightarrow OC\)là đường trung trực của \(MN\)

Vì \(I,C\in Oz\Rightarrow\)\(OI\)là đường trung trực của \(MN\)

\(\Rightarrow OI\perp MN\)

Mà \(OI\perp AB\)(Cm phần b)

\(\Rightarrow MN//AB\)

Cách 2:

Gọi \(K\)là giao điểm của \(AB\)và \(OI\)

Xét \(\Delta OAK\)vuông tại \(K\), có: \(\widehat{KAO}+\widehat{AOI}=90^o\left(\cdot\right)\)

Xét \(\Delta OMC\)vuông tại \(M\), có: \(\widehat{CMO}+\widehat{AOI}=90^o\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\)và \(\left(\cdot\cdot\right)\)\(\Rightarrow\widehat{KAO}+\widehat{AOI}=\widehat{CMO}+\widehat{AOI}\)

\(\Rightarrow\widehat{KAO}=\widehat{CMO}\)

Mà \(\widehat{KAO}\)và \(\widehat{CMO}\)là 2 góc ở vị trí đồng vị 

\(\Rightarrow AB//MN\)