Tìm các số nguyên n sao cho \(n^2-4n+9\)là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow\frac{2x}{x^2-3x+12}+\frac{6x}{x^2+2x+12}=1\)
\(\Leftrightarrow\frac{2}{x-3+\frac{12}{x}}+\frac{6}{x+2+\frac{12}{x}}=1\)
Đặt \(x+\frac{12}{x}=t\)
Khi đó:
\(pt\Leftrightarrow\frac{2}{t-3}+\frac{6}{t+2}=1\Leftrightarrow2t+4+6t-18=t^2-t-6\)
\(\Leftrightarrow t^2-t-6=8t-14\)
\(\Leftrightarrow t^2-9t+8=0\)
\(\Leftrightarrow\left(t-8\right)\left(t-1\right)=0\)
\(\Leftrightarrow x+\frac{12}{x}=8;x+\frac{12}{x}=1\)
Thôi,bí rồi
a, Số chia hết cho 3 mà không chia hết cho 9 : 4827 ; 6915 .
b, Số chia hết cho 2;3;5;9 : Ko có số nào
Tìm tham số m mới đúng nha !
\(\frac{2x-m}{x-2}+\frac{x-1}{x+2}=3\)
\(\Leftrightarrow\frac{2x^2+4x-mx-2m+x^2-x-2x+2}{\left(x-2\right)\left(x+2\right)}=3\)
\(\Leftrightarrow3x^2-x-mx-2m+2=3x^2-12\)
\(\Leftrightarrow x+mx+2m=14\)
\(\Leftrightarrow14-2m=x\left(m+1\right)\)
\(\Leftrightarrow x=\frac{14-2m}{m+1}=\frac{-2\left(m+1\right)+16}{m+1}=-2+\frac{16}{m+1}\)
\(x=-2+\frac{16}{m+1}>0\Leftrightarrow\frac{16}{m+1}>2\Leftrightarrow2m+2< 16\Leftrightarrow m< 7\)
Vậy m<7 thì pt có nghiệm dương
Ta gọi : a là \(x^2-x\)
Thay vào phương trình ta có : \(\frac{a}{a+1}\)+ \(\frac{a+2}{a-2}\)= 1
\(\Rightarrow\frac{a^2-2a+a^2+3a+2}{\left(a+1\right)\left(a-2\right)}\)= 1
\(\Rightarrow2a^2+a+2=a^2-a-2\)
\(\Rightarrow a^2+2a+4=0\)XÉT TAM THỨC BẬC HAI \(\Delta=2^2-4.4=-12< 0\)
Vậy phương trình vô nghiệm
Bài làm
Vì \(\widehat{AMN}=\widehat{ABC}\)
Mà hai góc này đồng vị
=> MN // BC
Xét tam giác ABC có:
MN // BC
Theo định lí Thales có:
\(\frac{AM}{MB}=\frac{AN}{NC}\)
hay \(\frac{x}{1,5}=\frac{4}{2}\)
=> x = 4 . 1,5 : 2 = 3
Vậy AM = 3 cm
# Học tốt#
. Thể tích là:
3x42x 9 = 54 cm3
Trong tam giác vuông ABC (vuông tại A), theo định lý Pytago, ta có cạnh huyền bằng:
√32+42 = 5 cm
Diện tích xung quanh là:
(3 + 4 + 5) x 9 = 108 cm2
Diện tích toàn phần là:
108 + 3 x 4 = 120 cm2
mik ko biết có đúng ko ạ
Bài làm
\(B=\frac{16-\left(x+1\right)^2}{x^2+10x+25}\)
\(B=\frac{\left(4-x-1\right)\left(4+x+1\right)}{\left(x+5\right)^2}\)
\(B=\frac{\left(3-x\right)\left(x+5\right)}{\left(x+5\right)^2}\)
\(B=\frac{3-x}{x+5}\)
# Học tốt #
Gải sử \(n^2-4n+9\)là số chính phương , khi đó
\(n^2-4n+9=k^2\)
\(=>n^2-4n+4+5=k^2=>\left(n-2\right)^2+5=k^2\)
=>\(\left(n-2\right)^2-k^2=-5\)
-=>\(\left(n-2-k\right)\left(n-2+k\right)=-5\)
sai sai chỗ nào nhỉ
dạ cái kia là -9 mik viết sai ạ