Cho biểu thức \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
a/ Rút gọn biểu thức A
b/ Tìm giá trị lớn nhất - nhỏ nhất của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=3\left(x^2+\frac{7}{3}x-\frac{5}{3}\right)\)
\(P=3\left(x^2+2.x.\frac{7}{6}+\frac{49}{36}-\frac{109}{36}\right)\)
\(P=3\left(x+\frac{7}{6}\right)^2-\frac{109}{12}\)
\(P_{min}=-\frac{109}{12}\Leftrightarrow x==-\frac{7}{6}\)
\(a)\)\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2+9-6=0\)
\(\Leftrightarrow-4x+7=0\)
\(\Leftrightarrow x=\frac{7}{4}\)
Vậy\(x=\frac{7}{4}\)
\(b)\)\(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-4x^2+1-10=0\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1-10=0\)
\(\Leftrightarrow-24x+27=0\)
\(\Leftrightarrow x=\frac{9}{8}\)
Vậy\(x=\frac{9}{8}\)
\(c)\)\(\left(x-4\right)^2-\left(x-2\right)\left(x+2\right)=6\)
\(\Leftrightarrow x^2-8x+16-x^2+4-6=0\)
\(\Leftrightarrow-8x+14=0\)
\(\Leftrightarrow x=\frac{7}{4}\)
Vậy\(x=\frac{7}{4}\)
Linz
à nêu cảm nhận thì mình nêu đc nhưng dùng biện pháp nói quá thì mình ko quen
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)