cho hai phương trình \(x^2-6x+9=0\) và \(x^3-6x^2+11x-6=0\). giải các phương trình đã cho biết rằng chúng có một nghiệm chung
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
câu 2 câu 3 nè
2) a) (ac+bd)2+(ad−bc)2=(ac)2+(bd)2+2ac.bd+(ad)2+(bc)2−2ad.bc=(a2+b2)(c2+d2)(ac+bd)2+(ad−bc)2=(ac)2+(bd)2+2ac.bd+(ad)2+(bc)2−2ad.bc=(a2+b2)(c2+d2)
b) Chuyển vế rồi khai triển, search trên mạng cũng có
3) Áp dụng BĐT Bunyakovsky, ta có:
x2+y2≥(x+y)22=222=2
\(\hept{\begin{cases}\left(m+2\right)x+2y=5\\mx-y=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m+2\right)x+2y=5\left(1\right)\\2mx-2y=2\left(2\right)\end{cases}}}\)
Lấy (1) +(2) có:
\(\left(m+2\right)x+2mx=7\)
\(\Leftrightarrow\left(m+2+2m\right)x=7\)
\(\Leftrightarrow\left(3m+2\right)x=7\)
\(\Leftrightarrow x=\frac{7}{3m+2}\)
Để hệ có nghiệm nguyên duy nhất thì 3m+2 \(\ne\)0 <=> m\(\ne\frac{-2}{3}\)
\(m\inℤ\Rightarrow3m+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
ta có bảng
3m+2 | -7 | -1 | 1 | 7 |
m | \(\frac{-1}{3}\) | -1 | \(\frac{5}{3}\) | -3 |
Vì m\(\in\)Z => m=-1; m=-3
Cả 3 bài này đều sử dụng định lí Pascal
B1: Với các điểm: NAMCIB cùng thuộc đường tròn (O)
NC cắt BM tại H; NI cắt AB tại P ; MI cắt AC tại Q
=> P; H ; Q thẳng hàng
B2: Xét các điểm ADCIBE cùng thuộc đường tròn (O)
B3: Tương tự.
\(x^2-6x+9=0\) (1)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)
\(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x=3\)
hoặc \(x=1\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)
Mà 2 phương trình trên có 1 nghiệm chung
\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)