Đề bài:Thực hiện phép tính, tính nhanh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|x^2+2x\right|\ge0;\left|y^2-9\right|\ge0\)
Dấu ''='' xảy ra <=> \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;x=-2\)
\(y^2-9=0\Leftrightarrow\left(y-3\right)\left(y+3\right)=0\Leftrightarrow y=\pm3\)
Tam giác ABC cân tại A, có góc A bằng 30 độ, suy ra góc B và C đều bằng 75 độ vẽ hình ra nhé, kéo dài BD từ A hạ đường vuông góc với BD cắt BD tại E từ A cũng hạ đường vuông góc với BC cắt BC tại F do góc BDC = 60 độ (đề bài cho) nên góc ABE bằng 75-60=15 độ xét 2 tam giác ABE và ABF - AB chung - góc BAF = góc ABE = 15 độ - góc AFB = góc AEB = 90 độ suy ra 2 tam giác bằng nhau (góc - cạnh - góc) suy ra AE = BF = 1/2 BC = 1cm xét tam giác nhỏ ADF ta có - tam giác này vuông tại F - góc DAF = 45 độ suy ra tam giác này vuông cân tại F suy ra AD = căn 2 AF = căn 2 cm giải thích thêm chỗ góc DAF = 45 độ do hai tam giác lớn cm bên trên bằng nhau suy ra góc BAF = góc ABE = 75 độ góc BAC = 30 độ (đề bài cho) suy ra góc DAF = 45 độ
Gọi chiều dài 2 cạnh góc vuông là a;b (a;b > 0) ; chiều dài cạnh huyền là c (c>0)
Với a > b
Ta có \(\frac{a}{24}=\frac{b}{7}\)
Đặt \(\frac{a}{24}=\frac{b}{7}=k\left(k>0\right)\Rightarrow\hept{\begin{cases}a=24k\\b=7k\end{cases}}\)
Vì tam giác đó vuông nên
a2 + b2 = c2 (định lý Py-ta-go)
=> (24k)2 + (7k)2 = c2
=> 576k2 + 49k2 = c2
=> 625k2 = c2
=> (25k)2 = c2
=> \(\orbr{\begin{cases}25k=c\left(tm\right)\\25k=-c\left(\text{loại vì }25k>0\text{ mà }-c< 0\right)\end{cases}}\)
=> 25k = c
Lại có a + b + c = 112
=> 24k + 7k + 25k = 112
=> 56k = 112
=> k = 2
=> c = 50
Vậy độ dài cạnh huyền là 50 cm
Bài làm của m ko chắc cho lắm nếu sai thì sửa nha
x(x+1) < 0
=> x và x+1 trái dấu
\(\hept{\begin{cases}x< 0\\x+1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x>-1\end{cases}\Rightarrow-1< x< 0}.}\)
Vậy -1 < x < 0
Bài 2 :
a, \(\left(x-1\right)^3=-8\Leftrightarrow\left(x-1\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow x-1=-2\Leftrightarrow x=-1\)
b, \(x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow x=0;x=-1\)
c, \(\left(2x+1\right)^2=25\Leftrightarrow\left(2x+1\right)^2=5^2\)
TH1 : \(2x+1=5\Leftrightarrow x=2\)
TH2 : \(2x+1=-5\Leftrightarrow x=-3\)
d, \(\left(2x-3\right)^2=36\Leftrightarrow\left(2x-3\right)^2=6^2\)
chia 2 trường hợp giống ý c
e, \(5^{x+2}=625\Leftrightarrow5^{x+2}=5^4\Leftrightarrow x+2=4\Leftrightarrow x=2\)
f, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left(2-x\right)\left(x+1\right)=0\Leftrightarrow x=1;x=2\)
Bài 3 :
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Leftrightarrow x=14;y=26\)
b, tương tự
c, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{19}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(x=38;y=42\)
d, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\Leftrightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36\Leftrightarrow x=6\)
\(\Leftrightarrow\frac{y^2}{16}=4\Leftrightarrow y^2=64\Leftrightarrow y=8\)
d, Theo bài ra ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)(*)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)(**)
Từ (*) ; (**) suy ra : \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau
- giải nốt nhé
e, Theo bài ra ta có : \(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)(*)
\(5y=3z\Rightarrow\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)(**)
Từ (*) ; (**) suy ra : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
làm nốt nhé !