K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Cho 2 số thực x,y khác 0 thay đổi và thỏa mãn: $(x+y)xy=x^{2}+y^{2}-xy$ .Tìm GTLN của $A=\frac{1}{x^{3}}+\frac{1}{y^{3}}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

14 tháng 8 2019

dễ thế makk ko bt

8 tháng 8 2019

\(\frac{1}{|x-y|\sqrt{x^6\left(x-y\right)^2}}=\frac{1}{|x-y|x^3|x-y|}\)

=\(\frac{1}{x^3\left(x-y\right)^2}\)

8 tháng 8 2019

\(\sqrt{\frac{2}{8-3\sqrt{7}}}=\frac{2\left(8+3\sqrt{7}\right)}{\left(8-3\sqrt{7}\right)\left(8+3\sqrt{7}\right)}=2\left(8+3\sqrt{7}\right)\)

8 tháng 8 2019

<=> \(7+\sqrt{2x}=9+6\sqrt{5}+5\)

<=> \(\sqrt{2x}=7+6\sqrt{5}\)

<=> 2x = 229 + 84\(\sqrt{5}\)

<=> x = 114,5 + 42\(\sqrt{5}\)

8 tháng 8 2019

\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)

\(\Leftrightarrow a^4+b^4+2a^2b^2-2ab^3-2a^3b\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge\left(a^2+b^2\right).2\sqrt{a^2.b^2}-2ab\left(a^2+b^2\right)=0\)( luôn đúng )

vì BĐT cuối luôn đúng nên BĐT đã cho đúng \(\Leftrightarrow a=b\)

7 tháng 8 2019

AD Bất Đẳng thức Cô si ta có 

\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\) dấu ''='' khi a= b

\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\) dấu = khi   a=b 

Cộng vế ta có \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}+\sqrt{b}+\sqrt{a}\ge2\sqrt{a}+2\sqrt{b}\)

=>     \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\) (Đ PCM ) 

dấu =   khi a=b

7 tháng 8 2019

đặt BT =A \(A^2=2+\sqrt{3}+2-\sqrt{3}-2\sqrt{4-3}\)

\(A^2=4-2=2\Rightarrow A=\sqrt{2}\)

7 tháng 8 2019

cảm ơn bạn nhé