Cho đoạn thẳng AB=6cm. Lấy các điểm M,N,Pl lần lượt là trung điểm của cá đoạn thẳng Ab,Am,BM. a) tính NP. b) nếu M chỉ là một điểm thuộc Ab thì độ dài NP sẽ như thế nào?
Cứu mik với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{3}{2}\right)^5\cdot x=\left(\dfrac{3}{2}\right)^7\)
=>\(x=\left(\dfrac{3}{2}\right)^7:\left(\dfrac{3}{2}\right)^5=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\dfrac{4}{9\cdot11}+\dfrac{4}{13\cdot15}+...+\dfrac{4}{95\cdot97}+\dfrac{4}{97\cdot99}\\ =2\cdot\left(\dfrac{2}{9\cdot11}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{95\cdot97}+\dfrac{2}{97\cdot99}\right)\\ =2\left(\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{99}\right)\\ =2\cdot\left(\dfrac{1}{9}-\dfrac{1}{99}\right)\\ =2\cdot\dfrac{11-1}{99}\\ =2\cdot\dfrac{10}{99}\\ =\dfrac{20}{99}\)
Sửa đề: `S = 4/(9.11) + 4/(11.13) + ... + 4/(97.99)`
`S = 2 . (2/(9.11) + 2/(11.13) + ... +2/(97.99))`
`S = 2 . (1/9 - 1/11 + 1/11 - 1/13 + ... + 1/97 - 1/99)`
`S = 2 . (1/9 - 1/99)`
`S = 2 . (11/99 - 1/99)`
`S = 2 . 10/99 `
`S = 20/99`
`527 + {[2 . (2 . 2^3 + 3^2 + 4^2 - 5^2) + 678^0]^3 : 33^2}`
`= 527 + {[2 . (16 + 9 + 16 - 25) + 1]^3 : 33^2}`
`= 527 + {[2 . (25 + 16 - 25) + 1]^3 : 33^2}`
`= 527 + {[2 . 16 + 1]^3 : 33^2}`
`= 527 + {[32 + 1]^3 : 33^2}`
`= 527 + {33^3 :33^2}`
`= 527 + 33^(3-2)`
`= 527 + 33`
`= 560`
Ta có: `(a - b)^2 >= 0`
`<=> a^2 - 2ab + b^2 >= 0`
`<=> a^2 + b^2 >= 2ab`
`<=> 2(a^2 + b^2 ) >= a^2 + 2ab + b^2 `
`<=> 2(a^2 + b^2) >= (a+b)^2`
`<=> a^2 + b^2 >= ((a+b)^2)/2`
`<=> a^2 + b^2 >= (4^2)/2`
`<=> a^2 + b^2 >= 16/2`
`<=> a^2 + b^2 >= 8 (đpcm)`
\(a+b\ge4\)
\(\Leftrightarrow\left(a+b\right)^2\ge16\)
\(\Leftrightarrow a^2+b^2+2ab\ge16\left(1\right)\)
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^2+b^2\right)\ge16\)
\(\Rightarrow a^2+b^2\ge8\left(dpcm\right)\)
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
b: Xét (O) có
ΔBCD nội tiếp
CD là đường kính
Do đó: ΔCBD vuông tại B
=>CB\(\perp\)BD
mà OA\(\perp\)BC
nên OA//BD
c: Xét (O) có
OB là bán kính
EB\(\perp\)OB tại B
Do đó: EB là tiếp tuyến của (O)
`(42 . 43 + 43 . 57 + 43) - 360 : 4 `
`= 43 . (42 + 57 + 1) - 90`
`= 43 . 100 - 90`
`= 4300 - 90 `
`= 4210`
`372 - 19 . 4 + (981:9-13)`
`= 372 - 76 + (109-13)`
`= 296 + 96`
`= 392`
Bài 1:
\(1,\left(y+3\right)^2\\ =y^2+2\cdot y\cdot3+3^2\\ =y^2+6y+9\\ 2,\left(x+3y\right)^2\\ =x^2+2\cdot x\cdot3y+\left(3y\right)^2\\ =x^2+6xy+9y^2\\ 3,\left(2x+3y\right)^2\\ =\left(2x\right)^2+3\cdot2x\cdot3y+\left(3y\right)^2\\ =4x^2+18xy+9y^2\\ 4,\left(4x^2+5y^4\right)\\ =\left(4x^2\right)^2+2\cdot4x^2\cdot5y^4+\left(5y^4\right)^2\\ =16x^4+40x^2y^4+25y^8\)
Bài 2:
\(1,\left(x-1\right)^2\\ =x^2-2\cdot x\cdot1+1^2\\ =x^2-2x+1\\ 2,\left(1-5a\right)^2\\ =1^2-2\cdot1\cdot5a+\left(5a\right)^2\\ =1-10a+25a^2\\ 3,\left(3x-1\right)^2\\ =\left(3x\right)^2-2\cdot3x\cdot1+1^2\\ =9x^2-6x+1\\ 4,-\left(\dfrac{1}{3}x-3y\right)^2\\ =-\left[\left(\dfrac{1}{3}x\right)^2-2\cdot\dfrac{1}{3}x\cdot3y+\left(3y\right)^2\right]\\ =-\left(\dfrac{1}{9}x^2-2xy+9y^2\right)\\ =-\dfrac{1}{9}x^2+2xy-9y^2\)
a: M là trung điểm của AB
=>\(MA=MB=\dfrac{AB}{2}=6\left(cm\right)\)
N là trung điểm của MA
=>\(AN=NM=\dfrac{AM}{2}=1,5\left(cm\right)\)
P là trung điểm của MB
=>\(MP=PB=\dfrac{MB}{2}=\dfrac{3}{2}=1,5\left(cm\right)\)
NP=MN+MP
=1,5+1,5=3(cm)
b: \(NP=NM+MP\)
\(=\dfrac{1}{2}\left(MA+MB\right)\)
\(=\dfrac{1}{2}\cdot AB=3\left(cm\right)\)