A = 24 x 37 + 24 x 15 + 52 x 76 B = 24 x 15 + 12 x 70
C = 201 x 132 – 201 x 82 + 99x50 D = 48 x 36 + 24 x 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
??
con được 1/2 hoặc là một nửa
!~~ HỌC TỐT ~~!
\(\left(x-y\right)^2\)
\(=\left(x-y\right)\left(x-y\right)\)
\(=\left(x-y\right)x-\left(x-y\right)y\)
\(=\left(x^2-xy\right)-\left(xy-y^2\right)\)
\(=x^2-2xy+y^2\)
Vậy chọ đáp án D. \(x^2-2xy+y^2\)
\(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+8}\)
= \(\frac{1}{\frac{1.2}{2}}+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{8.9}{2}}\)
= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)=2\left(1-\frac{1}{9}\right)=2.\frac{8}{9}=\frac{16}{9}\)
\(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+8}\)
\(A=\frac{1}{\frac{1.2}{2}}+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{8.9}{2}}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(A=2\left(1-\frac{1}{9}\right)=2.\frac{8}{9}=\frac{16}{9}\)
\(\text{Vậy A }=\frac{16}{9}\)
\(\text{#Hok tốt!}\)
6 và 1/8=49/8
5 và 3/4=23/4
quy đồng mẫu số:
49/8=196/32
23/4=184/32
*trong hai phân số có cùng mẫu số,phân số nào có tử số lớn hơn thì lớn hơn,phân số nào có tử số bé hơn thì bé hơn
vậy:196/32>184/32
6 và 1/8<5 và 3/4 là SAI nha
!~~ HỌC TỐT ~~!
Giải :
1 hộp có số bút chì là :
96 : 8 = 12 (cái)
5 hộp có số bút chì là :
12 x 5 = 60 (cái)
Đ/s : ...
Có \(P=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{399}{400}< \frac{2}{3}\times\frac{4}{5}\times...\times\frac{400}{401}\)
=> \(P^2< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{400}{401}=\frac{1}{401}< \frac{1}{400}=\frac{1}{20}\)
=> \(P< \frac{1}{20}\)(đpcm).
Ta có: E = \(\frac{x}{\sqrt{x}-1}=\frac{x-1+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}-1}\)
E = \(\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2\sqrt{\left(\sqrt{x}-1\right)\cdot\frac{1}{\sqrt{x}-1}}+2=2+2=4\)(bđt cosi)
Dấu "=" xảy ra <=> \(\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\) <=> \(\left(\sqrt{x}-1\right)^2=1\)
<=> \(\orbr{\begin{cases}\sqrt{x}-1=1\\\sqrt{x}-1=-1\end{cases}}\) <=> \(\orbr{\begin{cases}x=4\left(tm\right)\\x=0\left(ktm\right)\end{cases}}\)
Vậy MinE = 4 <=>. x = 4