Cho tam giác ABC đồng dạng với tam giác DEF theo tỷ số k=5/2 . Tính chu vi của mỗi tam giác biết tổng chu vi của chúng bằng 1890.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2}{x-4}-\frac{1}{x-2}=-2\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}-\frac{x-4}{\left(x-4\right)\left(x-2\right)}+2=0\)
\(\Leftrightarrow\frac{x^2-4x+4-x+4+2\left(x-4\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^2-5x+8+2x^2-12x+16=0\)
\(\Leftrightarrow3x^2-17x+24=0\)
\(\Leftrightarrow3x^2-9x-8x+24=0\)
\(\Leftrightarrow3x\left(x-3\right)-8\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-8\right)=0\)
\(\Leftrightarrow x=3\)hoặc \(x=\frac{8}{3}\)
\(\Rightarrow S=\left\{3;\frac{8}{3}\right\}\)
\(1.x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)\)
\(2.a^2x^2+axyz-ax^2z-a^2xy\)
\(=ax\left(ax+yz-xz-ay\right)\)
\(=ax\left[x\left(a-z\right)-y\left(a-z\right)\right]\)
\(=ax\left(x-y\right)\left(a-z\right)\)
a, đkxđ:x# 2 , x# -2
b,
A = \(\frac{x+1}{x-2}\)=0
<=> x + 1 = 0
<=> x = -1
c,B=\(\frac{x2}{x^2-4}\)
Mà x= \(-\frac{1}{2}\)
<=> \(\frac{1}{4}:\left(\frac{1}{4}-4\right)\)
<=>\(\frac{1}{4}:\frac{-15}{4}\)
<=>\(\frac{1}{4}.\frac{4}{-15}\)
<=>\(\frac{-1}{15}\)
d, \(A-B=\frac{x+1}{x-2}-\frac{x^2}{x^2-4}\)
\(=\frac{\left(x+1\right)\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
\(2x^2+xy-y^2\)
\(=x^2+xy+x^2-y^2\)
\(=x\left(x+y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(2x-y\right)\left(x+y\right)\)
Rồi để yêu cầu gì thì làm nha :333