-x^2+12x-35+?(phân tích đa thức thành nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Gọi vận tốc của bóng trên nền nhà là v1
Xét sau một thời gian t
quãng đường mà đỉnh đầu người đi được la s=v*t
quãng đường mà cái bóng trên nền nhà đi được s1=v1*t
vẽ hình ra, từ thời điểm ban đầu đến thời điểm t sẽ tính được tỷ lệ dựa vào định lý talet trong tam giác. ta có kết quả là :
v1= v*H/(H-h)
~Học tốt!~
https://olm.vn/hoi-dap/detail/61999750098.html
Câu hỏi của Hoàng Phúc - Toán lớp 8 - Học toán với OnlineMath
Một cách của a@olm.vn
Em làm cách này được không ạ?!
Với \(x\ne\pm y\), ta có: \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4\left(x^4-y^4\right)+8y^8}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^2\left(x^4+y^4\right)}{\left(x^4-y^4\right)\left(x^4+y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2-y^2\right)+4y^4}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2\left(x^2+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2-y^2}=4\)
\(\Leftrightarrow\frac{y\left(x-y\right)+2y^2}{\left(x-y\right)\left(x+y\right)}=4\)
\(\Leftrightarrow\frac{y\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}=4\)
\(\Leftrightarrow\frac{y}{x-y}=4\)
\(\Leftrightarrow y=4x-4y\Leftrightarrow5y=4x\left(đpcm\right)\)
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne-1\)
\(\frac{3x}{2}+\frac{x}{x+1}=2\)
\(\Leftrightarrow\frac{3x\left(x+1\right)}{2\left(x+1\right)}+\frac{2x}{2\left(x+1\right)}=\frac{4\left(x+1\right)}{2\left(x+1\right)}\)
\(\Rightarrow3x\left(x+1\right)+2x=4\left(x+1\right)\)
\(\Leftrightarrow3x\left(x+1\right)+2x-4\left(x+1\right)=0\)
\(\Leftrightarrow3x^2+3x+2x-4x-4=0\)
\(\Leftrightarrow3x^2+x-4=0\)
\(\Leftrightarrow3x^2-3x+4x-4=0\)
\(\Leftrightarrow3x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{4}{3}\end{cases}}\)
2 ngiệm vừa tìm được đều thỏa mãn ĐKXĐ.
Vậy tập nghiệm của phương trình là \(S=\left\{1;-\frac{4}{3}\right\}.\)
3x/2 + x/x+1 = 2 <=> 3x(x+1)/2(x+1) + 2x/2(x+1) = 4(x+1)/2(x+1) \(\frac{3}{2}\). NHÂN PHÁ NGOẶC VÀ KHỬ MẪU TA ĐC:
<=> 3x2 + 3x + 2x = 4x + 4 <=> 3x2 + x - 4 = 0\(\Delta\)
Đen - ta (kí hiệu tam giác) = b2 - 4ac = 12 - 4.(-4).3 = 1 + 48 = 49 > 0 => Phương trình có 2 nghiệm phân biệt :
x1 = -b+ căn đen ta / 2a = -1 + căn 49 / 2.3 = 6/6 =1
x2 = -b - căn đen ta / 2a = -1 - căn 49 / 2.3 = -8/6
Vậy phương trình có 2 nghiệm phân biệt là : S\(\hept{\begin{cases}\\\end{cases}}1,-\frac{8}{6}\)