\(\left(\sqrt{10}+\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\frac{\sqrt{2}.\left(4+\sqrt{7}\right)}{\sqrt{2}.\left(2\sqrt{2}+\sqrt{4+\sqrt{7}}\right)}+\frac{\sqrt{2}.\left(4-\sqrt{7}\right)}{\sqrt{2}.\left(2\sqrt{2}-\sqrt{4-\sqrt{7}}\right)}\)
\(T=\frac{4\sqrt{2}+\sqrt{14}}{4+\sqrt{8+2\sqrt{7}}}+\frac{4\sqrt{2}-\sqrt{14}}{4-\sqrt{8-2\sqrt{7}}}\)
\(T=\frac{4\sqrt{2}+\sqrt{14}}{4+\sqrt{7+2\sqrt{7}+1}}+\frac{4\sqrt{2}-\sqrt{14}}{4-\sqrt{7-2\sqrt{7}+1}}\)
\(T=\frac{4\sqrt{2}+\sqrt{14}}{4+\left(\sqrt{7}+1\right)^2}+\frac{4\sqrt{2}-\sqrt{14}}{4-\left(\sqrt{7}-1\right)^2}\)\(T=\frac{4\sqrt{2}+\sqrt{14}}{4+|\sqrt{7}+1|}+\frac{4\sqrt{2}-\sqrt{14}}{4-|\sqrt{7}-1|}\)
\(T=\frac{4\sqrt{2}+\sqrt{14}}{4+\sqrt{7}+1}+\frac{4\sqrt{2}-\sqrt{14}}{4-\sqrt{7}+1}\)
\(T=\frac{4\sqrt{2}+\sqrt{14}}{5+\sqrt{7}}+\frac{4\sqrt{2}-\sqrt{14}}{5-\sqrt{7}}\)
\(T=\frac{\left(4\sqrt{2}+\sqrt{14}\right).\left(5-\sqrt{7}\right)}{\left(5+\sqrt{7}\right).\left(5-\sqrt{7}\right)}+\frac{\left(4\sqrt{2}-\sqrt{14}\right).\left(5+\sqrt{7}\right)}{\left(5+\sqrt{7}\right).\left(5-\sqrt{7}\right)}\)
\(T=\frac{20\sqrt{2}-\sqrt{98}}{9}\)
\(T=\frac{13\sqrt{2}}{9}\)
\(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{1}=4\Leftrightarrow5-1=4\)(đúng)
Vậy \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)(đpcm)
\(M=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{2-6\sqrt{2}+9}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{6}}\)
\(=\sqrt{16+32\sqrt{6}}\)
Ta có: \(\Delta=\) \(\left(m-2\right)^2+4.8>0\)
=> Phương trình luôn có hai nghiệm \(x_1;x_2\)phân biệt.
Áp dụng định lí Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m+2\\x_1.x_2=-8\end{cases}}\)=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-m+2\right)^2+16\)
Khi đó: \(Q=\left(x_1^2-1\right)\left(x_2^2-1\right)=x_1^2.x_2^2-\left(x_1^2+x_2^2\right)+1=8^2-\left(m-2\right)^2-16+1\)
\(=-\left(m-2\right)^2+49\le49\)
Vậy min Q = 49 tại m=2
1.
Gọi A là tọa độ giao điểm của (d1) và (d2)
Xét phương trình hoành độ giao điểm của d1 và d2
\(x+4=\frac{-1}{2}x+\frac{7}{4}\)
\(\Leftrightarrow x+4=\frac{-2x+7}{4}\)
\(\Leftrightarrow4x+16=-2x+7\)
\(\Leftrightarrow6x=-9\)
\(\Leftrightarrow x=-\frac{3}{2}\)
Thay x = -3/2 vào ( d1 ) ta được:
y = -3/2 + 4 = 5/2
Vậy tọa độ giao điểm của 2 đường thẳng là A (-3/2 ; 5/2 )
2.
a)
x y=3/4x-3 0 -3 0 4
0 y x -3 4 y=3/4x-3 B C H
b) Áp dụng hệ thức lượng vào tam giác OBC vuông tại O
\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{4^2}+\frac{1}{\left(-3\right)^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{25}{144}\)
\(\Leftrightarrow OH^2=\frac{144}{25}\)
\(\Leftrightarrow OH=\frac{12}{5}=2,4\)
Vậy khoảng cách từ gốc tọa độ đến đường thẳng (D) là 2,4
Học tốt!!!
\(\left(\sqrt{10}+\sqrt{2}\right)\sqrt{3-\sqrt{5}}=\sqrt{2}\left(\sqrt{5}+1\right)\sqrt{3-\sqrt{5}}=\left(\sqrt{5}+1\right)\sqrt{6-2\sqrt{5}}=\left(\sqrt{5}+1\right)\sqrt{\left(\sqrt{5}-1\right)^2}\)\(=\left(\sqrt{5}+1\right)|\sqrt{5}-1|=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=\sqrt{5}^2-1^2=4\)