K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

??????????

16 tháng 4 2020

bằng 30

6 tháng 5 2020

????????????????????????????????????????

6 tháng 5 2020

?????

20 tháng 4 2020

ho mik đúng ik

16 tháng 4 2020

Bạn tham khảo các câu trả lời của mọi người tại đây:

Câu hỏi của zZz Cool Kid zZz - Toán lớp 8 - Học toán với OnlineMath

Và đây củng chính là Moldova TST 2005

16 tháng 4 2020

Một cách giải khác mình lấy được trên mạng

1 tháng 5 2020

Từ giả thiết ta có: (a+1)(b+1)(c+1) >=0 và (1-a)(1-b)(1-c) >=0

=> (a+1)(b+1)(c+1) +(1-a)(1-b)(1-c) >=0

Rút gọn ta có: -2((ab+bc+ca) =<2

Mặt khác (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0

=> a2+b2+c2=-2(ab+bc+ca)

=> a2+b2+c2 =<2

Dấu "=" xảy ra <=> a=0; b=1; c=-1

16 tháng 4 2020

Dùng Bất đẳng thức Cô sy cho mẫu số

16 tháng 4 2020

ta có 

\(a^4b^2\ge2\sqrt{a^4b^2}=2a^2b\)\(=>\frac{a}{a^4+b^2}\le\frac{a}{2a^2b}=\frac{1}{2ab}\)

tương tự ta có

\(\frac{b}{b^4+a^2}\le\frac{1}{2ab}\)

\(=>\frac{a}{a^4+b^2}+\frac{b}{b^4+a^2}\le\frac{1}{2ab}+\frac{1}{2ab}=\frac{1}{ab}\)

dấu = xảy ra khi \(\hept{\begin{cases}a^4=b^2\\a^2=b^4\end{cases}=>a^2=b^2=1}\)