K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8

\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+3ab\\ =ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+3abc\\ =\left(a^2b+ab^2+abc\right)+\left(bc^2+b^2c+abc\right)+\left(ca^2+ac^2+abc\right)\\ =ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\\ =\left(a+b+c\right)\left(ab+bc+ca\right)\)

7 tháng 8

Bài 3:

\(a,\left(x-3\right)^3-x^2\left(x+2\right)+11x=-108\\ \Leftrightarrow x^3-9x^2+27x-27-x^3-2x^2+11x^2=-108\\ \Leftrightarrow-11x^2+27x-27+11x^2=-108\\ \Leftrightarrow27x-27=-108\\ \Leftrightarrow27x=-108+27\\ \Leftrightarrow27x=-81\\ \Leftrightarrow x=-\dfrac{81}{27}\\ \Leftrightarrow x=-3\\ b,\left(2x+3\right)^3-8x\left(x+1\right)\left(x-1\right)=9x\left(4x-3\right)\\ \Leftrightarrow\left(8x^3+36x^2+54x+27\right)-8x\left(x^2-1\right)=36x^2-27x\\ \Leftrightarrow8x^3+36x^2+54x+27-8x^3+8x=36x^2-27x\\ \Leftrightarrow36x^2+62x+27=36x^2-27x\\ \Leftrightarrow62x+27=-27x\\ \Leftrightarrow62x+27x=-27\\ \Leftrightarrow89x=-27\\ \Leftrightarrow x=\dfrac{-27}{89}\)

Bài 4:

a: \(18^3-3\cdot18^2\cdot8+3\cdot18\cdot8^2-2^9\)

\(=18^3-3\cdot18^2\cdot8+3\cdot18\cdot8^2-8^3\)

\(=\left(18-8\right)^3=10^3=1000\)

b: \(997^3+9\cdot997^2+997\cdot27+27\)

\(=997^3+3\cdot997^2\cdot3+3\cdot997\cdot3^2+3^3\)

\(=\left(997+3\right)^3=1000^3=10^9\)

7 tháng 8

\(x^4-10x^2-11x-10\\ =\left(x^4-x\right)+\left(-10x^2-10x-10\right)\\ =x\left(x^3-1\right)-10\left(x^2+x+1\right)\\ =x\left(x-1\right)\left(x^2+x+1\right)-10\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left[x\left(x-1\right)-10\right]\\ =\left(x^2+x+1\right)\left(x^2-x-10\right)\)

7 tháng 8

\(x^4+6x^2+5x+6\\ =\left(x^4-x\right)+\left(6x^2+6x+6\right)\\ =x\left(x^3-1\right)+6\left(x^2+x+1\right)\\ =x\left(x-1\right)\left(x^2+x+1\right)+6\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left[x\left(x-1\right)+6\right]\\ =\left(x^2+x+1\right)\left(x^2-x+6\right)\)

Câu 1: \(x^3+x-2=0\)

=>\(x^3-x^2+x^2-x+2x-2=0\)

=>\(\left(x-1\right)\left(x^2+x+2\right)=0\)

mà \(x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}>0\forall x\)

nên x-1=0

=>x=1

Câu 3: \(x^4-10x^2-11x-10\)

\(=x^4-x^3-10x^2+x^3-x^2-10x+x^2-x-10\)

\(=x^2\left(x^2-x-10\right)+x\left(x^2-x-10\right)+\left(x^2-x-10\right)\)

\(=\left(x^2-x-10\right)\left(x^2+x+1\right)\)

Câu 5: \(x^3-x^2-14x+24\)

\(=x^3+4x^2-5x^2-20x+6x+24\)

\(=x^2\left(x+4\right)-5x\left(x+4\right)+6\left(x+4\right)\)

\(=\left(x+4\right)\left(x^2-5x+6\right)=\left(x+4\right)\left(x-2\right)\left(x-3\right)\)

Câu 6: \(x^3-5x^2+8x-4\)

\(=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

Câu 7:

\(\left(a-x\right)y^3-\left(a-y\right)x^3+\left(x-y\right)a^3\)

\(=a\cdot y^3-xy^3-a\cdot x^3+y\cdot x^3+\left(x-y\right)\cdot a^3\)

\(=a\left(y^3-x^3\right)-xy\left(y^2-x^2\right)+\left(x-y\right)a^3\)

\(=a\left(y-x\right)\left(y^2+xy+x^2\right)-xy\left(y-x\right)\left(y+x\right)-\left(y-x\right)a^3\)

\(=\left(y-x\right)\left[a\left(x^2+xy+y^2\right)-xy\left(x+y\right)-a^3\right]\)

 

NV
7 tháng 8

\(\left(x+y\right)^2-2\left(x+y\right)+1\)

\(=\left(x+y-1\right)^2\) (HĐT số 2)

NV
7 tháng 8

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=ab+bc+ca\)

\(\Rightarrow a+b+c+\left(abc-1\right)=ab+bc+ca\) (do \(abc-1=0\) nên có thể thêm bớt)

\(\Rightarrow abc-ab-bc-ca+a+b+c-1=0\)

\(\Rightarrow ab\left(c-1\right)-b\left(c-1\right)-a\left(c-1\right)+c-1=0\)

\(\Rightarrow\left(c-1\right)\left(ab-b-a+1\right)=0\)

\(\Rightarrow\left(c-1\right)\left[b\left(a-1\right)-\left(a-1\right)\right]=0\)

\(\Rightarrow\left(c-1\right)\left(a-1\right)\left(b-1\right)=0\) (đpcm)

a: Ta có: \(BF=FC=\dfrac{BC}{2}\)

\(AE=ED=\dfrac{AD}{2}\)

mà BC=AD

nên BF=FC=AE=ED

Xét tứ giác BFDE có

BF//DE

BF=DE

Do đó: BFDE là hình bình hành

=>EB=DF(3)

b: Ta có: BFDE là hình bình hành

=>BD cắt FE tại trung điểm của mỗi đường

mà O là trung điểm của FE

nên O là trung điểm của BD

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

mà O là trung điểm của BD

nên O là trung điểm của AC

=>AC,BD,EF đồng quy tại O

c: Xét ΔABD có

BE,AO là các đường trung tuyến

BE cắt AO tại I

Do đó: I là trọng tâm của ΔABD

=>\(BI=\dfrac{2}{3}BE\left(1\right)\)

Xét ΔDBC có

DF,CO là các đường trung tuyến

DF cắt CO tại K

Do đó: K là trọng tâm của ΔDBC

=>\(DK=\dfrac{2}{3}DF\left(2\right)\)

Từ (1),(2),(3) suy ra BI=DK

Xét tứ giác BIDK có

BI//DK

BI=DK

Do đó: BIDK là hình bình hành

=>BK=DI

Xét ΔBCI có

F là trung điểm của CB

FK//BI

Do đó: K là trung điểm của CI

=>CK=KI

Xét ΔAKD có

E là trung điểm của AD

EI//KD

Do đó: I là trung điểm của AK

=>AI=IK

Do đó: AI=IK=KC

NV
7 tháng 8

\(499^2+499+500\)

\(=499^2+499+\left(499+1\right)\)

\(=499^2+2.499+1\)

\(=\left(499+1\right)^2\)

\(=500^2\)

\(=2500\)