mn giúp mik với ạ mik cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(a,\left(x-3\right)^3-x^2\left(x+2\right)+11x=-108\\ \Leftrightarrow x^3-9x^2+27x-27-x^3-2x^2+11x^2=-108\\ \Leftrightarrow-11x^2+27x-27+11x^2=-108\\ \Leftrightarrow27x-27=-108\\ \Leftrightarrow27x=-108+27\\ \Leftrightarrow27x=-81\\ \Leftrightarrow x=-\dfrac{81}{27}\\ \Leftrightarrow x=-3\\ b,\left(2x+3\right)^3-8x\left(x+1\right)\left(x-1\right)=9x\left(4x-3\right)\\ \Leftrightarrow\left(8x^3+36x^2+54x+27\right)-8x\left(x^2-1\right)=36x^2-27x\\ \Leftrightarrow8x^3+36x^2+54x+27-8x^3+8x=36x^2-27x\\ \Leftrightarrow36x^2+62x+27=36x^2-27x\\ \Leftrightarrow62x+27=-27x\\ \Leftrightarrow62x+27x=-27\\ \Leftrightarrow89x=-27\\ \Leftrightarrow x=\dfrac{-27}{89}\)
Bài 4:
a: \(18^3-3\cdot18^2\cdot8+3\cdot18\cdot8^2-2^9\)
\(=18^3-3\cdot18^2\cdot8+3\cdot18\cdot8^2-8^3\)
\(=\left(18-8\right)^3=10^3=1000\)
b: \(997^3+9\cdot997^2+997\cdot27+27\)
\(=997^3+3\cdot997^2\cdot3+3\cdot997\cdot3^2+3^3\)
\(=\left(997+3\right)^3=1000^3=10^9\)
\(x^4-10x^2-11x-10\\ =\left(x^4-x\right)+\left(-10x^2-10x-10\right)\\ =x\left(x^3-1\right)-10\left(x^2+x+1\right)\\ =x\left(x-1\right)\left(x^2+x+1\right)-10\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left[x\left(x-1\right)-10\right]\\ =\left(x^2+x+1\right)\left(x^2-x-10\right)\)
\(x^4+6x^2+5x+6\\ =\left(x^4-x\right)+\left(6x^2+6x+6\right)\\ =x\left(x^3-1\right)+6\left(x^2+x+1\right)\\ =x\left(x-1\right)\left(x^2+x+1\right)+6\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left[x\left(x-1\right)+6\right]\\ =\left(x^2+x+1\right)\left(x^2-x+6\right)\)
Câu 1: \(x^3+x-2=0\)
=>\(x^3-x^2+x^2-x+2x-2=0\)
=>\(\left(x-1\right)\left(x^2+x+2\right)=0\)
mà \(x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}>0\forall x\)
nên x-1=0
=>x=1
Câu 3: \(x^4-10x^2-11x-10\)
\(=x^4-x^3-10x^2+x^3-x^2-10x+x^2-x-10\)
\(=x^2\left(x^2-x-10\right)+x\left(x^2-x-10\right)+\left(x^2-x-10\right)\)
\(=\left(x^2-x-10\right)\left(x^2+x+1\right)\)
Câu 5: \(x^3-x^2-14x+24\)
\(=x^3+4x^2-5x^2-20x+6x+24\)
\(=x^2\left(x+4\right)-5x\left(x+4\right)+6\left(x+4\right)\)
\(=\left(x+4\right)\left(x^2-5x+6\right)=\left(x+4\right)\left(x-2\right)\left(x-3\right)\)
Câu 6: \(x^3-5x^2+8x-4\)
\(=x^3-x^2-4x^2+4x+4x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
Câu 7:
\(\left(a-x\right)y^3-\left(a-y\right)x^3+\left(x-y\right)a^3\)
\(=a\cdot y^3-xy^3-a\cdot x^3+y\cdot x^3+\left(x-y\right)\cdot a^3\)
\(=a\left(y^3-x^3\right)-xy\left(y^2-x^2\right)+\left(x-y\right)a^3\)
\(=a\left(y-x\right)\left(y^2+xy+x^2\right)-xy\left(y-x\right)\left(y+x\right)-\left(y-x\right)a^3\)
\(=\left(y-x\right)\left[a\left(x^2+xy+y^2\right)-xy\left(x+y\right)-a^3\right]\)
\(\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y-1\right)^2\) (HĐT số 2)
\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\Rightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=ab+bc+ca\)
\(\Rightarrow a+b+c+\left(abc-1\right)=ab+bc+ca\) (do \(abc-1=0\) nên có thể thêm bớt)
\(\Rightarrow abc-ab-bc-ca+a+b+c-1=0\)
\(\Rightarrow ab\left(c-1\right)-b\left(c-1\right)-a\left(c-1\right)+c-1=0\)
\(\Rightarrow\left(c-1\right)\left(ab-b-a+1\right)=0\)
\(\Rightarrow\left(c-1\right)\left[b\left(a-1\right)-\left(a-1\right)\right]=0\)
\(\Rightarrow\left(c-1\right)\left(a-1\right)\left(b-1\right)=0\) (đpcm)
a: Ta có: \(BF=FC=\dfrac{BC}{2}\)
\(AE=ED=\dfrac{AD}{2}\)
mà BC=AD
nên BF=FC=AE=ED
Xét tứ giác BFDE có
BF//DE
BF=DE
Do đó: BFDE là hình bình hành
=>EB=DF(3)
b: Ta có: BFDE là hình bình hành
=>BD cắt FE tại trung điểm của mỗi đường
mà O là trung điểm của FE
nên O là trung điểm của BD
Ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
mà O là trung điểm của BD
nên O là trung điểm của AC
=>AC,BD,EF đồng quy tại O
c: Xét ΔABD có
BE,AO là các đường trung tuyến
BE cắt AO tại I
Do đó: I là trọng tâm của ΔABD
=>\(BI=\dfrac{2}{3}BE\left(1\right)\)
Xét ΔDBC có
DF,CO là các đường trung tuyến
DF cắt CO tại K
Do đó: K là trọng tâm của ΔDBC
=>\(DK=\dfrac{2}{3}DF\left(2\right)\)
Từ (1),(2),(3) suy ra BI=DK
Xét tứ giác BIDK có
BI//DK
BI=DK
Do đó: BIDK là hình bình hành
=>BK=DI
Xét ΔBCI có
F là trung điểm của CB
FK//BI
Do đó: K là trung điểm của CI
=>CK=KI
Xét ΔAKD có
E là trung điểm của AD
EI//KD
Do đó: I là trung điểm của AK
=>AI=IK
Do đó: AI=IK=KC
\(499^2+499+500\)
\(=499^2+499+\left(499+1\right)\)
\(=499^2+2.499+1\)
\(=\left(499+1\right)^2\)
\(=500^2\)
\(=2500\)
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+3ab\\ =ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+3abc\\ =\left(a^2b+ab^2+abc\right)+\left(bc^2+b^2c+abc\right)+\left(ca^2+ac^2+abc\right)\\ =ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\\ =\left(a+b+c\right)\left(ab+bc+ca\right)\)