CMR:
\(\left(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\right)\) là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cotg2a-cotg2a.cos2a= cotg2a(1-cos2a) =\(\frac{cos^2a}{sin^2a}sin^2a=cos^2a\)
\(DK:x,y>0\)
HPT\(\Leftrightarrow\hept{\begin{cases}3x^2y=2y^2+1\\3xy^2=2x^2+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x^2y=2y^2+1\left(1\right)\\3xy\left(x-y\right)-2\left(x^2-y^2\right)=0\left(2\right)\end{cases}}\)
Xet PT(2)
\(\Leftrightarrow\left(x-y\right)\left(3xy-2x-2y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\y=\frac{2x}{3x-2}\end{cases}}\)
Xet \(x=y\)
Thay vao PT(1) ta duoc:
\(3x^3=2x^2+1\)
\(\Leftrightarrow3x^3-2x^2-1=0\)
\(\Leftrightarrow3x^2\left(x-1\right)+\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x^2+x+1\right)=0\)
Vi \(3x^2+x+1>0\left(\forall x>0\right)\)
\(\Rightarrow x=1\left(n\right)\)
\(\Rightarrow y=1\left(n\right)\)
Xet \(y=\frac{2x}{3x-2}\left(DK:x>\frac{3}{2}\right)\)
Cái này thay vào roi giải(dài lắm)
Áp dụng BĐT AM - GM
\(A=\left(a+1\right)\left(1+\frac{1}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)
\(=\frac{a}{b}+\frac{b}{a}+a+\frac{1}{a}+b+\frac{1}{b}+2\)
\(=\frac{a}{b}+\frac{b}{a}+\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}+2\)
\(\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{a.\frac{1}{2a}}+2\sqrt{b.\frac{1}{2b}}+2\sqrt{\frac{1}{2a}.\frac{1}{2b}}+2\)
\(=4+2\sqrt{2}+\frac{1}{\sqrt{ab}}\ge4+2\sqrt{2}+\frac{1}{\frac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)
\(=4+3\sqrt{2}\)
Dấu " = " xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Ta co:\(1=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\le\sqrt{2}\)
Ta lai co:
\(A=\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b+2\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)+2\)
\(\ge2+2\sqrt{2}+2\sqrt{2}-\sqrt{2}+2=4+3\sqrt{2}\)
Dau '=' xay ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Vay \(A_{min}=4+3\sqrt{2}\)khi \(a=b=\frac{1}{\sqrt{2}}\)