Hình thang ABCD(AB//CD) có AB=7cm,CD=10cm,AD=8cm và góc D=30độ.Kẻ AH vuông góc với CD tại H,kéo dài AH lấy E sao cho HE=HA 1.Chứng minh tam giác ADE đều 2.Tính AH,diện tích tam giác ADE và diện tích hình thang ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thể tích không khí trong chiếc lều:
V = 3².2,8 : 3 = 8,4 (m³)
b) Diện tích toàn phần của lều:
3² + 4.3,18.3 : 2 = 28,08 (m²)
Số tiền mua vải:
28,08 . 150000 - 28,08 . 150000 . 5% = 4001400 (đồng)
Lời giải:
$T=(x+4)(x^2-4)(x+8)+8(x+3)^2$
$=(x+4)(x+2)(x-2)(x+8)+8(x+3)^2$
$=(x^2+6x+8)(x^2+6x-16)+8(x^2+6x+9)$
$=(a+8)(a-16)+8(a+9)$ (đặt $a=x^2+6x$)
$=a^2-56=(x^2+6x)^2-56\geq 0-56=-56$
Vậy $T_{\min}=-56$. Giá trị này đạt tại $x^2+6x=0\Leftrightarrow x=0$ hoặc $x=-6$
Lời giải:
a. $(x+2)^2=x^2+2.2.x+2^2=x^2+4x+4$
b. Đề đọc khó hiểu quá. Bạn viết lại bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề hơn.
\(3xy\left(2x^2y\right)\)
\(=3xy\cdot2x^2y\)
\(=\left(3\cdot2\right)\cdot\left(x^2\cdot x\right)\cdot\left(y\cdot y\right)\)
\(=6x^3y^2\)
A B C D H E
1/
Xét tg vuông AHD và tg vuông EHD có
HA=HD (gt); DH chung => tg AHD = tg EHD (hai tg vuông có 2 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{DAH}=\widehat{DEH}\)
Xét tg vuông AHD có
\(\widehat{DAH}=90^o-\widehat{ADH}=90^o-30^o=60^o\)
\(\Rightarrow\widehat{DAH}=\widehat{DEH}=60^o\)
Xét tg ADE có
\(\widehat{ADE}=180^o-\left(\widehat{DAH}+\widehat{DEH}\right)=180^o-\left(60^o+60^o\right)=60^o\)
\(\Rightarrow\widehat{DAH}=\widehat{DEH}=\widehat{ADE}=60^o\)
=> tg ADE là tg đều
2/
Xét tg vuông AHD có
\(AH=\dfrac{AD}{2}=\dfrac{8}{2}=4cm\) (trong tg vuông cạnh đối diện góc \(30^o\) bằng nửa cạnh huyền)
\(\Rightarrow AH=EH=4cm\Rightarrow AH+EH=AE=8cm\)
\(DH=\sqrt{AD^2-AH^2}=\sqrt{8^2-4^2}=4\sqrt{3}cm\) (Pitago)
\(\Rightarrow S_{ADE}=\dfrac{1}{2}.AE.DH=\dfrac{1}{2}.8.4\sqrt{3}=16\sqrt{3}cm^2\)
\(\Rightarrow S_{ABCD}=\dfrac{\left(AB+CD\right).AH}{2}=\dfrac{\left(7+10\right).4}{2}=34cm^2\)