K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{x-1}+\frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x+6}ĐKXĐ:x\ne1;2;3;-6\)

\(\frac{\left(x-2\right)\left(x-3\right)\left(x+6\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x+6\right)}+\frac{2.\left(x-1\right)\left(x-3\right)\left(x+6\right)}{\left(x-2\right)\left(x-1\right)\left(x-3\right)\left(x+6\right)}+\frac{3.\left(x-1\right)\left(x-2\right)\left(x+6\right)}{\left(x-3\right)\left(x-2\right)\left(x-1\right)\left(x+6\right)}=\frac{6.\left(x-1\right)\left(x-3\right)\left(x-2\right)}{\left(x+6\right)\left(x-1\right)\left(x-3\right)\left(x-2\right)}\)

\(14x^2-114x+108=-36x^2+66x-36\)

\(14x^2-114x+108+36x^2-66x+36=0\)

\(50x^2-180x+144=0\)

\(2\left(5x-6\right)\left(5x-12\right)=0\)

\(2\ne0\)=> vô nghiệm 

\(5x-6=0\Leftrightarrow5x=6\Leftrightarrow x=\frac{6}{5}\)

hoặc 

\(5x-12=0\Leftrightarrow5x=12\Leftrightarrow x=\frac{12}{5}\)

Theo ĐKXĐ => tm 

Cái chỗ phân tích dài loằng ngoằng kia ko hiểu thì hỏi tớ nha , tớ cx chưa xem lại vì nó hơi dài 

a, 

Ta có ON // BH ( cùng vuông góc với AC )

OM // AH ( cùng vuông góc với BC )

MN // AB ( MN là đường trung bình của tam giác ABC )

Vậy tam giác OMN đồng dạng với tam giác HAB.

b,

Xét tam giác AHG và MOG có :

\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )

\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )

Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)

Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)

\(\Rightarrow H,G,O\)thẳng hàng