Rút gọn: \(A=\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (a2+b2)(a+b)2- 2(a+b)2 +1+ a2b2 -2ab= -4ab <=> (a2+b2)(a2+b2+2ab)- 2(a+b)2+ a2b2+ 2ab+ 1=0
<=> [(a2+b2)2+(a2+b2).2ab+a2b2 ] - 2(a2+b2+2ab)+2ab+1=0 <=> (a2+b2+ab)2- 2(a2+b2+ab)+1=0
<=> (a2+b2+ab-1)2=0 <=> a2+b2+ab-1=0 <=> (a+b)2-(1+ab)=0 <=> (a+b)2 =1+ab => \(\sqrt{1+ab}=\)\(|a+b|\)là số hữu tỉ
\(\left(GT\right)\Rightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(1+ab\right)+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-\left(1+ab\right)\right]^2=0\Rightarrow\left(a+b\right)^2-\left(1+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)^2=1+ab\Leftrightarrow\left|a+b\right|=\sqrt{1+ab}\left(a,b\inℚ\right)\)
\(a,1+\sqrt[3]{x-16}=\sqrt[3]{x+3}.\)
Đặt \(\sqrt[3]{x-16}=a\Rightarrow x-16=a^3\)
\(\sqrt[3]{x+3}=b\Rightarrow x+3=b^3\)
\(\Rightarrow a^3-b^3=-19\)
Mà \(1+a=b\)
\(\Rightarrow a-b=-1\)
Ta có hệ phương trình :
\(\hept{\begin{cases}a^3-b^3=-19\\a-b=-1\end{cases}}\)\(\Rightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=-19\)
\(\Rightarrow a^2+ab+b^2=19\)
\(\Rightarrow\left(a-b\right)^2-ab=19\)
\(\Rightarrow1-ab=19\Rightarrow ab=-18\)
\(\Rightarrow a=-\frac{18}{b}\)( 1)
\(a-b=-1\)
Thay vào ( 1 ) ta có : \(-\frac{18}{b}-b=-1\)
Thay vào tính ra b, rồi tính a, và tìm x nhé. ( số hơi xấu 1 tí
b tương tự. đặt ẩn rồi giải hệ phương trình nha. có gì khó hiểu hỏi tớ ^^