K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

Bạn ko cho biểu thức thì mk tính kiểu j??

13 tháng 10 2019

tính bc

tính bd,dc

tính hd,hb,hc

tự vẽ hình..

\(BC=\sqrt{AC^2+AB^2}=\sqrt{12^2+16^2}=20cm\)( Định lý pitago cho tam giác vuông ABC)

\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2cm\)( Áp dụng hệ thức lương cho tam giác vuông ABC)

\(HC=BC-HB=20-7,2=12,8cm\)

13 tháng 10 2019

x-1=căn x+3

x^2-2x+1=x+3

x^2-3x-2=0

(x-1)(x-2)=0

x=1 hoặc x=2

13 tháng 10 2019

a,đk -1<x<7

x+1+2 căn 7-x-2 căn x+1=căn (x+1)(7-x)

13 tháng 10 2019

Tham khảo :

https://olm.vn/hoi-dap/detail/54645394832.html

#Kỳ Nhi

13 tháng 10 2019

Sửa đề:\(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{b}{bc+c+1}}+\sqrt{\frac{a}{ca+c+1}}\ge\sqrt{3}\)Giả thiết \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+c=3\) (chia hai vế của giả thiết ab > 0)

Hay \(x+y+z=3\left(\text{với }x=\frac{1}{a};y=\frac{1}{b};z=c\right)\)

Khi đó BĐT quy về: \(\sqrt{\frac{1}{x+y+xy}}+\sqrt{\frac{1}{y+z+yz}}+\sqrt{\frac{1}{z+x+zx}}\ge\sqrt{3}\)

Áp dụng trực tiếp BĐT AM-GM cho 3 số:

\(VT\ge3\sqrt[6]{\frac{1}{\left(x+y+xy\right)\left(y+z+yz\right)\left(z+x+zx\right)}}\)

\(=\frac{3\sqrt[6]{3^3}}{\sqrt[6]{\left(x+y+xy\right)\left(y+z+yz\right)\left(z+x+zx\right).3.3.3}}\)

\(=\frac{3\sqrt{3}}{\sqrt[6]{\left(x+y+xy\right)\left(y+z+yz\right)\left(z+x+zx\right).3.3.3}}\)

\(\ge\frac{18\sqrt{3}}{2\left(x+y+z\right)+xy+yz+zx+9}\)

\(\ge\frac{18}{2\left(x+y+z\right)+\frac{\left(x+y+z\right)^2}{3}+9}=\sqrt{3}\)

Check hộ em thử xem sửa đề có đúng không:D Thấy đề nó sai sai nên em sửa thôi:) Với lại đang buồn ngủ nên em chả biết có ngược dấu chỗ nào chăng@@

13 tháng 10 2019

Dòng cuối nhầm chút:

\(\ge\frac{18\sqrt{3}}{2\left(x+y+z\right)+\frac{\left(x+y+z\right)^2}{3}+9}=\sqrt{3}\) (thiếu căn 3 trên tử)

cong là j vậy?