Cho đa thức:
\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)
a,Thu gọn đa thức và xác định bậc của đa thức kết quả.
b, Tìm đa thức b sao cho A+B=0
c, Tìm đa thức C sao cho A+C=-2XY+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M.N.P = \(-5xy.11xy^2.\frac{7}{5}x^2y^3=-77x^4.y^6\)
Nhận thấy : \(x^4.y^6=\left(x^2.y^3\right)^2\ge0\forall x;y\)
=> \(-77x^4y^6=-77\left(x^2y^3\right)^2\le0\forall x;y\)
=> M.N.P \(\le0\)
=> 3 đơn thức không thể có cùng giá trị dương
\(\left(x,y\inℝ;x,y\ne0\right)\)
\(M=-5xy,N=11xy^2,P=\frac{7}{5}x^2y^3\)
\(\Rightarrow M.N.P=-5xy.11xy^2.\frac{7}{5}x^2y^3=\left(-5.11.\frac{7}{5}\right).\left(x.x.x^2\right).\left(y.y^2.y^3\right)=-49x^4y^6\)
\(\text{Ta có:}x^4>0,y^6>0\Rightarrow x^4y^6>0\Rightarrow-49x^4y^6< 0\)
\(\Rightarrow\orbr{\begin{cases}\text{1 đơn thức âm và 2 đơn thức dương}\\\text{Cả 3 đơn thức đều âm}\end{cases}}\Rightarrow\text{Ba đơn thức không thể có cùng giá trị dương}\left(đpcm\right)\)
a, \(A\left(x\right)=\frac{1}{2}x^4x^3\left(-8x^2y^2\right)=-4x^9y^2\)
bậc 9
b, Thay x = 1 ; y = -1 biểu thức A tương đương
\(A=-4.1.1=-4\)
Vậy với x = 1 ; y = -1 thì A = -4
\(2x+5-4x=8\Leftrightarrow-2x=3\Leftrightarrow x=-\frac{3}{2}\)
Vậy x = -3/2
Trả lời:
1, Vì tg ABC cân tại A (gt) => ^ABC = ^ACB (tc)
Vì AE = AD (gt) => tg AED cân tại A (tc)
Xét tg ABC cân tại A có:
^A + ^ABC + ^ACB = 180o
=> ^A + 2.^ABC = 180o
=> ^ABC = 180o - ^A : 2 (1)
Xét tg AED cân tại A có:
^A + ^AED + ^ADE = 180o
=> ^A + 2.^AED = 180o
=> ^AED = 180o - ^A : 2 (2)
Từ (1) và (2) => ^ABC = ^AED
mà 2 góc này ở vị trí đồng vị
nên DE // BC (đpcm)
2, Ta có: AB = AC (tg ABC cân tại A) và AE = AD (gt)
=> AB - AE = AC - AD
=> EB = DC
Xét tg EBC và tg DCB có:
EB = DC (cmt)
^ABC = ^ACB (cmt)
BC chung
=> tg EBC = tg DCB (c-g-c)
=> ^BEC = ^CDB = 90o ( 2 góc tương ứng )
=> CE _|_ AB (đpcm)
1)
Theo đề ra: AE = AD
=> Tam giác AED cân tại A
=> Góc AED = ( 180 độ - góc A ) : 2
Tam giác AED cân tại A
=> Góc ABC = ( 180 độ - góc A ) : 2
Ta có: Góc AED = ( 180 độ - góc A ) : 2
=> Góc AED = góc ABC mà hai góc này ở vị trí đồng vị => ED // BC
2)
Xét tam giác ADB và tam giác AEC, ta có:
AB = AC ( Tam giác ABC cân tại A )
Góc A: chung
AD = AE ( gt )
=> Góc ADB = góc AEC ( c-g-c )
=> Góc ADB = góc AEC ( Hai góc tương ứng )
Ta có: Góc ADB = 90 độ
=> Góc AEC = 90 độ
=> CE vuông góc với AB
Trả lời:
\(N=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{a\left(a+1\right)\left(a+2\right)}\)
\(\Rightarrow\)\(2N=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{a\left(a+1\right)\left(a+2\right)}\)
\(\Rightarrow\)\(2N=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
\(\Rightarrow\)\(2N=\frac{1}{1\cdot2}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
\(\Rightarrow\)\(2N=\frac{1}{2}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
\(\Rightarrow\)\(N=\frac{\frac{1}{2}-\frac{1}{\left(a+1\right)\left(a+2\right)}}{2}\)
\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)
\(A=\left(5xy^2-xy^2\right)+\left(xy+2xy+xy\right)+\left(-\frac{1}{3}x^2y+x^2y\right)+6\)
\(A=4xy^2+4xy+\frac{2}{3}x^2y+6\)
b) để A+B=0 => B là số đối của A
\(\Rightarrow B=-4xy^2-4xy-\frac{2}{3}x^2y-6\)
c) Ta có \(A+C=-2xy+1\Leftrightarrow4xy^2+4xy+\frac{2}{3}x^2y+6+C=-2xy+1\)
\(\Leftrightarrow C=-2xy+1-4xy^2-4xy-\frac{2}{3}x^2y-6\)
\(\Leftrightarrow C=\left(-2xy-4xy\right)+\left(1-6\right)-4xy^2-\frac{2}{3}x^2y\)
\(\Leftrightarrow C=-6xy-5-4xy^2-\frac{2}{3}x^2y\)