Tìm x:
x+1/10 + x+1/11 + x+1/12 = x+1/13 + x+1/14
x+4/2000 + x+3/2001 = x+2/2002 + x+1/2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
(a;b)=(35;28)(a;b)=(35;28)
Giải thích các bước giải:
Gọi ƯCLN(a;b)=c⇒a=cm;b=cnƯCLN(a;b)=c⇒a=cm;b=cn sao cho ƯCLN(m;n)=1(m;n)=1
⇒BCNN(a;b)=c.m.n=140⇒BCNN(a;b)=c.m.n=140 (1)
Mà a−b=7⇒c.m−c.n=c.(m−n)=7a−b=7⇒c.m−c.n=c.(m−n)=7 (2)
Từ (1) và (2) ta có:
⇒c∈ƯC(7;140)={1;7}⇒c∈ƯC(7;140)={1;7}
• Với c=1c=1
⇒m.n=140=1.140=2.70;m−n=7⇒m.n=140=1.140=2.70;m−n=7 (Loại vì không có m,nm,n thỏa mãn)
• Với c=7c=7
⇒m.n=20=1.20=2.10=4.5;m−n=1⇒m.n=20=1.20=2.10=4.5;m−n=1
⇒m=5;n=4⇒a=35;b=28⇒m=5;n=4⇒a=35;b=28
Vậy (a;b)=(35;28)(a;b)=(35;28).
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2011}-1\right)\)
\(=-\frac{1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-2010}{2011}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2010}{2011}\)
\(=\frac{1.2.3...2010}{2.3.4...2011}=\frac{1}{2011}\)
x+110+x+111+x+112=x+113+x+114x+110+x+111+x+112=x+113+x+114
= x+110+x+111+x+112−x+113−x+114x+110+x+111+x+112−x+113−x+114
⇒(x+1)(110+111+112−113−114)⇒(x+1)(110+111+112−113−114)
Vì 10<11<12<13<14 ⇒110>111>112>113>114⇒110>111>112>113>114
⇒110+111+112−113−114>0⇒110+111+112−113−114>0
⇒x+1=0⇒x+1=0
⇒x=−1
Câu 1:x+1/10 + x+1/11 = x+1/12 + x+1/13 + x+1/14.
<-> (x+1)(1/10+1/11-1/12-1/13-1/14)=0
<-> x+1=0
<-> x=-1
Câu 2:
x+4/2000+x+3/2001=x+2/2002+x
⇔x+4/2000+1+x+3/2001=x+2/2002+1+x+1/2003
⇔x+2004/2000+x+2004/2001=x+2004/2002+x+2004/2003
⇔(x+2004)/(1/2000+1/2001−1/2002−1/2003)=0
⇔x+2004=0
⇔x=-2004