Cho \(x,y,z>0\)và \(x+y+z=1\). Chứng minh:
a) \(27x^3\sqrt{x}+27y^3\sqrt{y}+27z^3\sqrt{z}+\sqrt{x}+\sqrt{y}+\sqrt{z}\ge2\sqrt{3}\)
b) \(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge\frac{1}{\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\sqrt{2}\sqrt{2-\sqrt{3}}\)\(+\sqrt{2}\sqrt{2+\sqrt{3}}\)
\(=\sqrt{4-2\sqrt{3}}\)\(+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\)\(+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|\)\(+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3}+1\)
\(=2\sqrt{3}\)
đặt \(2008=a\)
\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\sqrt{\left(a+1\right)^2-\frac{2\left(a+1\right).a}{a+1}+\left(\frac{a}{a+1}\right)^2}=\)\(\sqrt{\left(a+1-\frac{a}{a+1}\right)^2}=a+1-\frac{a}{a+1}\)=2008+1- \(\frac{2008}{2009}\)
=> A= 2008+1 = 2009
\(\left(\sqrt{75}+\sqrt{16}-\sqrt{300}\right)\sqrt{3}\)
\(=3\left(\sqrt{25}+\sqrt{16}-\sqrt{100}\right)\)
\(=3\left(5+4-10\right)\)
\(=-3\)
\(\left(x+3\right).\sqrt{26-x^2}=\left(x-6\right).\left(x+3\right)
\)
\(\Leftrightarrow\sqrt{26-x^2}=x-6\)
\(\Leftrightarrow26-x^2=\left(x-6\right)^2\)
\(\Leftrightarrow26-x^2=x^2-12x+36\)\(\Leftrightarrow2x^2-12x+10=0\)
\(\Leftrightarrow\left(x-5\right).\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
vậy x= 5 hoặc x=1
Ta có:
\(n^2\equiv0;1\left(mod4\right)\)
\(\Rightarrow2^{n^2}\equiv1;2\left(mod5\right);2^{4n^4+1-n^2}\equiv2;1\left(mod5\right)\)
\(\Rightarrow2^{n^2}+2^{4n^4+1-n^2}\equiv3\left(mod5\right)\)
\(\Rightarrow2^{n^2}+2^{4n^4+1-n^2}=5k+3\left(k\in N\right)\)
\(\Rightarrow2^{M\left(n\right)}-8=2^{5k+3}-8=2^{5k}.2^3-8\equiv8-8\equiv0\left(mod31\right)\)
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=\frac{x^2}{\sqrt{x}}+\frac{y^2}{\sqrt{y}}+\frac{z^2}{\sqrt{z}}\) (1)
Áp dụng BDT Cauchy-Schwarz:
\(\left(1\right)\ge\frac{\left(x+y+z\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=\frac{1}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Ta lại có: \(x+y+z\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)
Thay vào ta có \(\left(1\right)\ge\frac{1}{\sqrt{3}}\)
Dấu = xảy ra khi x=y=z=1/3
\(27x^3\sqrt{x}+27y^3\sqrt{y}+27z^3\sqrt{z}+\sqrt{x}+\sqrt{y}+\sqrt{z}\ge6\sqrt{3}\left(x^2+y^2+z^2\right)\)
Lại có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)
Thay vào -> dpcm