\(\sqrt{x^6+37x^4+400x^2+1344}=\left(x^2+5\right)\left(3x^2-6-\sqrt{x^2+12}\right)+42\)
Giải phương trình !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\hept{\begin{cases}x^2-4x+y^2+4y=9\\\left(x^2-4x\right)\left(y^2+4y\right)=-36\end{cases}}\)
Đặt \(\hept{\begin{cases}x^2-4x=a\\y^2+4y=b\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a+b=9\\ab=-36\end{cases}}\)
Theo định lý Viet đảo, a và b là nghiệm của \(t^2-9t-36=0\)
\(\hept{\begin{cases}x+\frac{3}{x}+y-\frac{2}{y}=5\\x^2+\frac{9}{x^2}+y^2+\frac{4}{y^2}=15\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x+\frac{3}{x}+y-\frac{2}{y}=5\\\left(x+\frac{3}{x}\right)^2+\left(y-\frac{2}{y}\right)^2=17\end{cases}}\)
Đặt \(\hept{\begin{cases}x+\frac{3}{x}=a\\y-\frac{2}{y}=b\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a+b=5\\a^2+b^2=17\end{cases}}\) \(\Rightarrow\left(a;b\right)=\left(1;4\right);\left(4;1\right)\)
\(\Rightarrow...\)
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=a-\frac{a^2}{a+1}+b-\frac{b^2}{b+1}+c-\frac{c^2}{c+1}\)
\(=1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{1}{1+3}=\frac{1}{4}\)
\(\Rightarrow1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\le1-\frac{1}{4}=\frac{3}{4}\)
\(\Rightarrow GTLN=\frac{3}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
Đặt \(x+1=t\Rightarrow x=t-1\)
\(\Rightarrow f\left(t\right)=2\left(t-1\right)^2-1=2t^2-4t+1\)
\(\Rightarrow f\left(x\right)=2x^2-4x+1\)