tìm GTNN C\(=\frac{x^2+5x+8}{x^2+2x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chia tử cho mẫu
=>B=2+1/x+1/x^2
sau đó nhóm các số thành hằng đẳng thức là ra
a) Xét △BEA và △BAC có :
\(\widehat{E}=\widehat{A}\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\)△BEA ~ △BAC (g.g)
b) +) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)
\(\Rightarrow AB^2=BE.BC\)
\(\Rightarrow BE=1,8\left(cm\right)\)
+) Áp dụng định lý Pythagoras vào △ABC, ta được :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\)
+) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)
\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)
c) Xét △BAI và △BEK có :
\(\widehat{A}=\widehat{E}=\left(90^o\right)\)
\(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)
\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)
\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)
\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)
d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC
\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)
Vì Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)
\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)
Gọi số hàng của kho thứ nhất là a tấn hàng (a > 0)
\(\Rightarrow\)Số hàng của kho thứ hai là \(\frac{a}{4}\)tấn hàng
Ta có phương trình :
\(\frac{5}{6}\left(a-24\right)=\frac{a}{4}+24\)
\(\Leftrightarrow\frac{5}{6}a-20=\frac{a}{4}+24\)
\(\Leftrightarrow\frac{7}{12}a=44\)
\(\Leftrightarrow a=\frac{528}{7}\)
Vậy số hàng trong kho thứ nhất là \(\frac{528}{7}\)tấn
số hàng trong kho thứ hai là \(\frac{528}{7}\cdot\frac{1}{4}=\frac{137}{7}\)tấn
2) \(x^4-x^2+2x+2\)
\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(=x^2\left(x-1+2\right)\left(x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(=\left(x^2+x\right)^2\)
Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x
\(C=\frac{x^2+5x+8}{x^2+2x+1}=\frac{x^2+2x+1+3x+3+4}{x^2+2x+1}\)
\(=\frac{\left(x+1\right)^2+3\left(x+1\right)+4}{\left(x+1\right)^2}=1+\frac{3}{x+1}+\frac{4}{\left(x+1\right)^2}\)
Đặt \(\frac{1}{x+1}=a\)\(\Rightarrow C=1+3a+4a^2\)
\(\Rightarrow C=4\left(a^2+\frac{3}{4}a+\frac{1}{4}\right)=4\left(a^2+2.\frac{3}{8}+\frac{9}{64}-\frac{9}{64}+\frac{1}{4}\right)\)
\(=4\left(a+\frac{3}{8}\right)^2+\frac{7}{16}\)
\(\Rightarrow C_{min}=\frac{7}{16}\Leftrightarrow\)\(a=-\frac{3}{8}\Leftrightarrow\frac{1}{x+1}=-\frac{3}{8}\)
\(\Rightarrow3\left(x+1\right)=-8\Rightarrow x=-\frac{11}{3}\)
Vậy \(C_{min}=\frac{16}{7}\Leftrightarrow x=-\frac{11}{3}\)