a) Tìm tất cả các số nguyên x; y thoả mãn : 2xy - 2x + y= 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số học sinh \(3\) em chiếm số phần học sinh cả lớp là:
\(\dfrac{1}{3}-\dfrac{1}{4}=\dfrac{1}{12}\) (số học sinh)
Số học sinh của lớp \(6A\) là:
\(3:\dfrac{1}{12}=36\) (học sinh)
Đáp số: \(36\) học sinh
\(\dfrac{1}{x}+\dfrac{y}{2}=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{2+xy}{2x}=\dfrac{5}{8}\)
\(\Leftrightarrow8+4xy=5x\)
\(\Leftrightarrow x\left(5-4y\right)=8\)
mà \(x,y\) là các số nguyên nên \(x,5-4y\) là các ước của \(8\)
Ta có bảng giá trị:
x | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
5-4y | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
y | 3/2(l) | 7/4(l) | 9/4(l) | 13/4(l) | -3/4(l) | 1/4(l) | 3/4(l) | 1(tm) |
Vậy ta có cặp \(\left(x,y\right)\) thỏa mãn là \(\left(8,1\right)\).
\(\dfrac{D}{5}=\dfrac{6-1}{1.6}+\dfrac{11-6}{6.11}+\dfrac{16-11}{11.16}+...+\dfrac{31-26}{26.31}=\)
\(=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{26}-\dfrac{1}{31}=\)
\(=1-\dfrac{1}{31}=\dfrac{30}{31}\Rightarrow D=\dfrac{5.30}{31}=\dfrac{150}{31}\)
\(2x\left(y-1\right)+y-1=11\Leftrightarrow\left(2x+1\right)\left(y-1\right)=11\)
\(\Rightarrow2x+1;y-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)