Tìm các số nguyên x y biết thoã mãn : 2xy - x + y =3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = {xanh, đỏ, vàng, tím}
b) Trường hợp xấu nhất có thể xảy ra là lấy được 6 bi tím, 7 bi vàng, 7 bi đỏ và 7 bi xanh
Cần lấy thêm 1 viên bi nữa sẽ chắc chắn có ít nhất 8 viên bi cùng màu
Số viên bi cần lấy:
6 + 7 + 7 + 7 + 1 = 28 (viên)
a) A = {xanh, đỏ, vàng, tím}
b) Trường hợp xấu nhất có thể xảy ra là lấy được 6 bi tím, 7 bi vàng, 7 bi đỏ và 7 bi xanh
Cần lấy thêm 1 viên bi nữa sẽ chắc chắn có ít nhất 8 viên bi cùng màu
Số viên bi cần lấy:
6 + 7 + 7 + 7 + 1 = 28 (viên)
A = 5 + 5² + 5³ + ... + 5²⁰¹⁹
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁰
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁰) - (5 + 5² + 5³ + ... + 5²⁰¹⁹)
= 5²⁰²⁰ - 5
⇒ 4A + 5 = 5²⁰²⁰ - 5 + 5
= 5²⁰²⁰
= (5¹⁰¹⁰)²
Vậy 4A + 5 là số chính phương
Lời giải:
$\frac{x}{27}=\frac{-5}{3}$
$x=27.\frac{-5}{3}=-45$
Khi nhân cả tử và mẫu với cùng một số nguyên khác không ta được phân số mới bằng phân số đã cho.
Vì vậy có rất nhiều phân số bằng phân số = - \(\dfrac{15}{24}\) em nhé.
Lời giải:
Coi quãng đường $AB$ dài $x$ km. Sau khi chạy được 2/5 quãng đường đầu thì còn $x-\frac{2}{5}x=\frac{3}{5}x$ (km)
Vậy kể từ giờ thứ hai ô tô còn $\frac{3}{5}x$ km đường. Giờ thứ hai sau khi xe chạy được 2/5 quãng đường thì đi còn 3/5 quãng đường. 3/5 quãng đường này dài: $40+4=44$ (km)
Độ dài quãng đường ô tô đi kể từ giờ thứ hai (tức là $\frac{3}{5}x$) dài:
$44:\frac{3}{5}=73,3$ (km)
Độ dài quãng đường AB là:
$x=73,3:\frac{3}{5}=122$ (km)
Vận tốc trung bình: $122:3=40,7$ (km/h)
** Bổ sung điều kiện $x,y$ là số nguyên.
Lời giải:
$2x+xy+y=5$
$\Rightarrow (2x+xy)+y=5$
$\Rightarrow x(y+2)+(y+2)=7$
$\Rightarrow (x+1)(y+2)=7$
Do $x,y$ là số nguyên nên $x+1, y+2$ cũng là số nguyên. Mà $(x+1)(y+2)=7$ nên ta có các TH sau:
TH1: $x+1=1, y+2=7$
$\Rightarrow x=0; y=5$
TH2: $x+1=-1, y+2=-7$
$\Rightarrow x=-2; y=-9$
TH3: $x+1=7, y+2=1$
$\Rightarrow x=6; y=-1$
TH4: $x+1=-7, y+2=-1$
$\Rightarrow x=-8; y=-3$
Tìm \(x;y\) \(\in\) Z/ 2\(x+xy+y=5\)
Ta có: 2\(x+xy+y=5\)
⇒ \(x\)(2 + y) + y = 5
\(x\)(2 + y) = 5 - y
\(x\) = \(\dfrac{5-y}{2+y}\) (y ≠ - 2)
\(x\in\) Z ⇔ 5 - y ⋮ 2 + y
7 - 2 - y ⋮ 2 + y
7 - (2 + y) ⋮ 2 + y
7 ⋮ 2 + y
2 + y \(\in\) Ư(7) = {-7; -1; 1; 7}
Lập bảng ta có:
2+ y | -7 | -1 | 1 | 7 |
y | -9 | -3 | -1 | 5 |
\(x\) = \(\dfrac{5-y}{2+y}\) | -2 | -8 | 6 | 0 |
Theo bảng trên ta có các cặp số nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-2; -9); (-8; -3); (6; -1); (0; 5)
Lời giải:
$2xy-x+y=3$
$\Rightarrow (2xy-x)+y=3$
$\Rightarrow x(2y-1)+y=3$
$\Rightarrow 2x(2y-1)+2y=6$
$\Rightarrow 2x(2y-1)+(2y-1)=5$
$\Rightarrow (2y-1)(2x+1)=5$
Do $x,y$ là số nguyên nên $2x+1,2y-1$ nguyên. Mà $(2y-1)(2x+1)=5$ nên xét các TH sau:
TH1: $2y-1=1, 2x+1=5$
$\Rightarrow y=1; x=2$
TH2: $2y-1=-1, 2x+1=-5$
$\Rightarrow y=0; x=-3$
TH3: $2y-1=5, 2x+1=1$
$\Rightarrow y=3; x=0$
TH4: $2y-1=-5, 2x+1=-1$
$\Rightarrow y=-2; x=-1$
2xy- x+y = 3
<=> x(2y-1) + y =3
<=> 2x(2y-1) + (2y -1) = 5
<=> (2y-1) (2x+1) = 5 =1.5=(-1).(-5)
lập bảng giá trị
Vậy (x:y)={(2;1),(0;3),(-1;-2),(-3;0)}