cho x>0, y>0, x+y= 1. Hãy chứng minh rằng x2+y2 > hoặc = 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3-z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
Luôn đúng
\(a.\left(a+2b\right)^3-b.\left(2a+b\right)^3\)
\(=a.\left(a+20+b\right)^3-b.\left(20+a+b\right)^3\)
\(=\left(a-b\right).\left(a+20+b\right)^3\)
Thế này có phải là phân tích đa thức thành nhân tử k ạ
Chúc bạn học tốt
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=\left(a^4+6a^3b+12a^2b^2+8ab^3\right)-\left(b^4+8a^3b+12a^2b^2+6ab^3\right)\)
\(=a^4-b^4-2a^3b+2ab^3\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a-b\right)^3\left(a+b\right)\)
OK ?
Bài này dễ thôi bạn.
Trả lời:
3x - 7 = 5
3x = 5 + 7
3x = 12
x = 12:3
x = 4
Vậy x = 4
Ủng hộ nhé
Theo bđt cauchy schwarz dạng engel
\(x^2+y^2=\frac{x^2}{1}+\frac{y^2}{1}\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(đpcm\right)\)
Dấu = xảy ra \(< =>x=y=\frac{1}{2}\)
Theo Bunhiacopski ta có:
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
Đẳng thức xảy ra tại x=y=1/2
Trình bày khác xíu :))