GPT với ẩn số là x:
\(\frac{a}{1-bx}=\frac{b}{1-ax}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x3 - 3xy2 = 10
<=> (x3 - 3xy2)2 = 100
<=> x6 - 6x4y2 + 9x2y4 = 100 (1)
y3 - 3x2y = 30
<=> (y3 - 3x2y)2 = 900
<=> y6 - 6x2y4 + 9x4y2 = 900 (2)
Từ (1) và (2) cộng vế theo vế:
x6 - 6x4y2 + 9x2y4 + y6 - 6x2y4 + 9x4y2 = 100 + 900
<=> x6 + 3x4y2 + 3x2y4 + y6 = 1000
<=> (x2 + y2)3 = 103
<=> x2 + y2 = 10
Vậy P = x2 + y2 = 10
\(x^3-3xy^2=10\Leftrightarrow\left(x^3-3xy^2\right)^2=100\Leftrightarrow x^6-6x^4y^2+9x^2y^4=100\)
\(y^3-3x^2y=30\Leftrightarrow\left(y^3-3x^2y\right)^2=900\Leftrightarrow y^6-6x^2y^4+9x^4y^2=900\)
cộng vế theo vế ta có: \(x^6+3x^4y^2+3x^2y^4+y^6=1000\Leftrightarrow\left(x^2+y^2\right)^2=100\Leftrightarrow x^2+y^2=10\)
vậy P=10
Giải:
4xn (7xn-1 + x - 5) - 2xn-2 (14xn+1 - 10x2)
= 28x2n-1 +4xn + 1 – 20xn - 28x2n-1 + 20xn
= 4xn+1
\(A=x+\frac{1}{x^2}=\frac{x}{8}+\frac{x}{8}+\frac{1}{x^2}+\frac{3x}{4}\ge3\sqrt[3]{\frac{x}{8}.\frac{x}{8}.\frac{1}{x^2}}+\frac{3.2}{4}=\frac{3}{4}+\frac{6}{4}=\frac{9}{4}\) ( áp dụng cô- si cho 3 số không âm )
Dấu "=" xảy ra <=> x = 2
vào thống kê xem link nhé:
Câu hỏi của Kim Trân Ni - Toán lớp 8 - Học toán với OnlineMath
a) có chất mới được tào thành : magie ôxit
Magie + Khí oxi −→to→to Magie oxit
2Mg+O2−→to2MgO2Mg+O2→to2MgO
b) có 2 chất mới được tạo thành : kẽm clorua và khí hidro
Zn+2HCl→ZnCl2+H2↑Zn+2HCl→ZnCl2+H2↑
Kẽm + axit clohidric →→ Kẽm clorua + Khí hidro
d) chất mới được tạo thành là khí cabonic và hơi nước
PTHH: ..............................................
f) ôxit sắt từ được tạo thành
3Fe+2O2−→toFe3O43Fe+2O2→toFe3O4
Sắt + khí oxi −→to→to Sắt (II,III) oxit (hoặc ôxit sắt từ)
Đặt \(x^2=a;y^2=b\left(a,b\ge0\right)\)
Ta có
\(x^6+y^6=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=a^2-ab+b^2\)
\(\ge a^2-\frac{a^2+b^2}{2}+b^2=\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Vậy Min = 1/4 khi \(x=y=\frac{1}{\sqrt{2}}\)
Ta có
+)\(x^2+y^2=1\leftrightarrow\left(x+y\right)^2-2xy=1\)
+) Đặt x+y=S, xy = P, ta được: \(S^2-2P=1\)
+)\(x^6+y^6=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)=x^4-x^2y^2+y^4=\left(x^2+y^2\right)^2-3x^2y^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-3x^2y^2=\left(S^2-2P\right)^2-3P^2=S^4-4S^2P+4P^2-3P^2\)
\(=S^4-4S^2P+P^2=\left(2P+1\right)^2-4\left(2P+1\right)P+P^2\)
\(=4P^2+4P+1-8P^2-4P+P^2=-3P^2+1\le1\)
Dấu = xảy ra khi \(\hept{\begin{cases}P=0\\S=1\end{cases}}\), khi đó x=1, y=0 hoặc x=0, y=1
Sửa đề:
Cách 1:
\(\left(5x-1\right)^2+2.\left(1-5x\right).\left(4+5x\right)+\left(5x+4\right)^2\)
\(=\left(1-5x\right)^2+2.\left(1-5x\right).\left(5x+4\right)+\left(5x+4\right)^2\)
\(=\left(1-5x+5x+4\right)^2\)
\(=5^2\)
\(=25\)
Cách 2:
\(\left(5x-1\right)^2+2.\left(1-5x\right).\left(4+5x\right)+\left(5x+4\right)^2\)
\(=\left(5x-1\right)^2-2.\left(5x-1\right).\left(5x+4\right)+\left(5x+4\right)^2\)
\(=\left(5x-1-5x-4\right)^2\)
\(=\left(-5\right)^2\)
\(=25\)
a) 3x(x + 7)2 - 11x2(x + 7) + 9(x + 7) = (x + 7)[3x(x + 7) - 11x2 + 9) = (x + 7)(3x2 + 21x - 11x2 + 9)
= (x + 7)(-8x2 + 21x + 9)(-8x2 + 24x - 3x + 9) = (x + 7)[-8x(x - 3) - 3(x - 3)] = -(x + 7)(8x + 3)(x - 3)
b) 3x(x - 9)2 - (9 - x)3 = 3x(x - 9)2 + (x - 9)3 = (x - 9)2(3x + x - 9) = (x - 9)2(4x - 9)
c) pm + 2.q - pm + 1.q3 - p2.qn + 1 + p.qn + 3 = (pm + 2.q - p2.qn + 1) - (pm + 1.q3 - p.qn + 3)
= p2.q(pm - qn) - p.q3(pm - qn) = pq(pm - qn)(p - q2)
d) x2y2z + xy2z2 + x2yz = xyz(xy + yz + x)
a) \(3x\left(x+7\right)^2-11x^2\left(x+7\right)+9\left(x+7\right)\)
\(=\left(x+7\right)\left[3x\left(x+7\right)-11x^2+9\right]=\left(x+7\right)\left(3x^2+21x-11x^2+9\right)\)
\(=\left(x+7\right)\left(-8x^2+21x+9\right)=\left(x+7\right)\left[\left(-8x^2+24x\right)-\left(3x-9\right)\right]\)
\(=\left(x+7\right)\left[-8x\left(x-3\right)-3\left(x-3\right)\right]=-\left(x+7\right)\left(x-3\right)\left(8x+3\right)\)
b) \(3x\left(x-9\right)^2-\left(9-x\right)^3=3x\left(x-9\right)^2+\left(x-9\right)^3\)
\(=\left(x-9\right)^2\left(3x+x-9\right)=\left(x-9\right)^2\left(4x-9\right)\)
c) \(p^{m+2}.q-p^{m+1}.q^3-p^2.q^{n+1}+p.q^{n+3}\)
\(=p^{m+1}.q\left(p-q^2\right)-p.q^{n+1}\left(p-q^2\right)\)\(=p.q.\left(p-q^2\right).\left(p^m.q^n\right)\)
d) \(x^2y^2z+xy^2z^2+x^2yz=xyz\left(xy+yz+x\right)\)
Đẳng thức tương đương: \(a-a^2x=b-b^2x\Leftrightarrow a-b=x\left(a^2-b^2\right)\)
+) TH1: a=b hoặc a=-b thì 0=0.x, vậy phương trình có vô số nghiệm
+) TH2: \(a\ne b\) thì \(x=\frac{a-b}{\left(a-b\right)\left(a+b\right)}=\frac{1}{a+b}\)
ĐK: \(x\ne\frac{1}{a};\frac{1}{b}\)
pt <=> \(a-a^2x=b-b^2x\Leftrightarrow\left(a^2-b^2\right)x=a-b\)(1)
TH1: \(a^2-b^2=0\Leftrightarrow\orbr{\begin{cases}a=b\\a=-b\end{cases}}\)
Với a = b; Ta có: (1) trở thành: 0x = 0 => phương trình có vô số nghiệm
Với a = - b; Ta có: (1) trở thành: 0x = 2a \(\ne\)0 => phương trình vô nghiệm
TH2: \(\hept{\begin{cases}a\ne b\\a\ne-b\end{cases}}\)
Ta có: pt (1) <=> \(x=\frac{1}{a+b}\)
Vậy:....