cho đường thẳng d: y = mx + 1
Tìm m để đg thẳng d đi qua giao điểm của d' : y = -2x + 3 và Oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có AB và AC là tiếp tuyến tại A và B của (O)
=> AB⊥OB và AC⊥OC
Xét ΔAOB và ΔAOC có
OB=OC(=R)
Góc ABO=Góc ACO=90
OA chung
=> ΔAOB=ΔAOC
=> AB=AC
=> A∈trung trực của BC
Có OB=OC(=R)
=>O∈trung trực của BC
=> OA là đường trung trực của BC
Mà H là trung điểm của BC
=>A;H;O thẳng hàng
Xét ΔABO vuông tại B
=>A;B:O cùng thuộc đường tròn đường kính OA
Xét ΔACO vuông tại C
=>A;C;O cùng thuộc đuường tròn đường kính OA
=>A;B;C;O cùng thuộc đường tròn đường kính OA
b) Xét (O) có BD là đường kính
=>ΔBCD vuông tại C
=> CD⊥BC
Mà OA⊥BC
=>OA//CD
=> Góc AOC=Góc OCD
Xét ΔOCD có OC=OD
=> ΔOCD cân tại O
=> Góc OCD=Góc ODC
=> Góc ODC=Góc AOC
Xét ΔAOC và ΔCDK có
Góc AOC=Góc CDK
Góc ACO=Góc CKD=90
=>ΔAOC∞ΔCDK
=>AOCDAOCD= ACCKACCK
=>AC.CD=CK.OA
d) Xét ΔOCK vuông tại K
=> ΔOCK nội tiếp đường tròn đường kính OC
Xét ΔOHC vuông tại H
=> ΔOHC nội tiếp đường tròn đươngf kính OC
=> Tứ giác OKCH nội tiếp đường tròn đường kính OC
=> Góc CHK=Góc COD
Có góc BOA=Góc BCK( cùng phụ góc CBD)
Góc CHI+góc BCK=Góc BOA+ góc BAO
=>Góc CHI=Góc BAO
Mà Góc BAO=Góc CBD( cùng phụ góc ABC)
=> Góc CHI=Góc CBD
=> HI//BD
Xét ΔBCD có HI//BD và H là trung điểm của BC
=> HI là đường trung bình của ΔBCD
=> I là trung điểm của CK
Áp dụng BĐT Svac - xơ:
\(T=\frac{a}{a^2+8bc}+\frac{b}{b^2+8ca}+\frac{c}{c^2+8ab}\)
\(=\frac{a^2}{a^3+8abc}+\frac{b^2}{b^3+8abc}+\frac{c^2}{c^3+8abc}\)\(\ge\frac{\left(a+b+c\right)^2}{a^3+b^3+c^3+24abc}\)
Ta lại có: \(\left(a+b+c\right)^3=a^3+b^3+c^3+\)\(3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(\ge a^3+b^3+c^3+27\sqrt[3]{abc}.\sqrt[3]{\left(abc\right)^2}-3abc=\)\(a^3+b^3+c^3+24abc\)
Lúc đó: \(T\ge\frac{1}{a+b+c}=1\)
(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))
Ta có : \(T\ge2\sqrt{\sqrt{\left(x^2-x+2\right)\left(x^2+x+2\right)}}=2\sqrt[4]{\left(x^2-x+2\right)\left(x^2+x+2\right)}\)
\(=2\sqrt[4]{x^4+3x^2+4}\ge2\sqrt[4]{4}=2\sqrt{2}\)
Vậy Min T = \(2\sqrt{2}\)khi x = 0