K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

a) Ta có AB và AC là tiếp tuyến tại A và B của (O)

=> AB⊥OB và AC⊥OC

Xét ΔAOB và ΔAOC có 

       OB=OC(=R)

Góc ABO=Góc ACO=90

       OA chung

=> ΔAOB=ΔAOC

=> AB=AC

=> A∈trung trực của BC

Có OB=OC(=R)

=>O∈trung trực của BC

=> OA là đường trung trực của BC 

Mà H là trung điểm của BC

=>A;H;O thẳng hàng

Xét ΔABO vuông tại B

=>A;B:O cùng thuộc đường tròn đường kính OA

Xét ΔACO vuông tại C

=>A;C;O cùng thuộc đuường tròn đường kính OA

=>A;B;C;O cùng thuộc đường tròn đường kính OA

b) Xét (O) có BD là đường kính

=>ΔBCD vuông tại C

=> CD⊥BC

Mà OA⊥BC

=>OA//CD

=> Góc AOC=Góc OCD

Xét ΔOCD có OC=OD

=> ΔOCD cân tại O

=> Góc OCD=Góc ODC

=> Góc ODC=Góc AOC

Xét ΔAOC và ΔCDK có 

Góc AOC=Góc CDK

Góc ACO=Góc CKD=90

=>ΔAOC∞ΔCDK

=>AOCDAOCD= ACCKACCK 

=>AC.CD=CK.OA

d) Xét ΔOCK vuông tại K

=> ΔOCK nội tiếp đường tròn đường kính OC

Xét ΔOHC vuông tại H

=> ΔOHC nội tiếp đường tròn đươngf kính OC

=> Tứ giác OKCH nội tiếp đường tròn đường kính OC

=> Góc CHK=Góc COD

Có góc BOA=Góc BCK( cùng phụ góc CBD)

Góc CHI+góc BCK=Góc BOA+ góc BAO

=>Góc CHI=Góc BAO

Mà Góc BAO=Góc CBD( cùng phụ góc ABC)

=> Góc CHI=Góc CBD

=> HI//BD

Xét ΔBCD có HI//BD và H là trung điểm của BC

=> HI là đường trung bình của ΔBCD

=> I là trung điểm của CK

29 tháng 4 2020

hay ghê

27 tháng 12 2019

Áp dụng BĐT Svac - xơ:

\(T=\frac{a}{a^2+8bc}+\frac{b}{b^2+8ca}+\frac{c}{c^2+8ab}\)

\(=\frac{a^2}{a^3+8abc}+\frac{b^2}{b^3+8abc}+\frac{c^2}{c^3+8abc}\)\(\ge\frac{\left(a+b+c\right)^2}{a^3+b^3+c^3+24abc}\)

Ta lại có: \(\left(a+b+c\right)^3=a^3+b^3+c^3+\)\(3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(\ge a^3+b^3+c^3+27\sqrt[3]{abc}.\sqrt[3]{\left(abc\right)^2}-3abc=\)\(a^3+b^3+c^3+24abc\)

Lúc đó: \(T\ge\frac{1}{a+b+c}=1\)

(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))

27 tháng 12 2019

Cho tớ sửa đề 

tử của ba cái là mũ 2 lên hết nha

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
30 tháng 7 2023

https://olm.vn/hoi-dap/detail/240776023190.html

28 tháng 12 2019

Ta có : \(T\ge2\sqrt{\sqrt{\left(x^2-x+2\right)\left(x^2+x+2\right)}}=2\sqrt[4]{\left(x^2-x+2\right)\left(x^2+x+2\right)}\)

\(=2\sqrt[4]{x^4+3x^2+4}\ge2\sqrt[4]{4}=2\sqrt{2}\)

Vậy Min T = \(2\sqrt{2}\)khi x = 0