tính giá trị của biểu thức
a) \(A\left(x\right)=x^3-30x^2-31x+\)1 tại x =31
c) \(B=-1^{2+2^2-3^2+4^2-......-99^2+100^2}\)
mọi người mình đang cần gấp mong mọi người giúp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn viết rõ đề ra được không . MÌnh không hiểu đề cho lắm
Đặt \(A=12.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(\Rightarrow2A=24.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^2-1\right).\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^4-1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^8-1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^{16}-1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^{16}\right)^2-1^2\)
\(2A=5^{32}-1\)
\(\Rightarrow A=\frac{5^{32}-1}{2}.\)
N = (-y2 + 4)(2y3 + 6y - 1) + 2(y5 - 4y3 + 2)- y2(-6y + 1)
N = -y2(2y3 + 6y - 1) + 4(2y3 + 6y - 1) + 2y5 - 8y3 - 4 + 6y3 - y2
N = -2y5 - 6y3 + y2 + 8y3 + 24y - 4 + 2y5 - 8y3 - 4 + 6y3 - y2
N = (-2y5 + 2y5) + (-6y3 + 8y3 - 8y3 + 6y3) + (y2 - y2) + 24y + (-4 - 4)
N = 24y - 8
Thay y = -3,5 vào biểu thức N ta có :
N = 24.(-3,5) - 8 = -84 - 8 = -92
Ta có : \(x^2+x+4=x^2+x+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)
+) \(\left(x-1\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(\left(x-1\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+x=-4\end{cases}}\)
+) x2 + x = - 4
<=> ( x + 1/2 )2 = - 4 + 1/4 = -15/4
Mà ( x + 1/2 )2 lớn hơn hoặc bằng 0 với mọi x
=> x2 + x + 4 = 0 ktm
Vậy pt = 0 <=> x = 1
a) E=
X3- 3.5x2 + 3.52x + 53
X3- 3.5x2 + 3.52x + 53
(a + 5)3
b) = X2 – xy + x2 + xy
= 2x2
b) Tại x=14 thì:\(B\left(x\right)=x^5-15x^4+16x^3-29x^2+13x\)
\(=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+x\left(x-1\right)\)
\(=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x=-x=-14\)
a) A(x)=1
a)\(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)
\(=2x^2\left(5x^2-2x+1\right)-3x\left(5x^2-2x+1\right)\)
\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)
\(=10x^4-19x^3+8x^2-3x\)
a. \(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)
\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)
\(=10x^4-19x^3+8x^2-3x\)
b. \(\left(2x^4-x^3+3x^2\right):\left(\frac{1}{3}x^2\right)\)
\(=\left(2x^4-x^3+3x^2\right).\frac{3}{x^2}\)
\(=0,6x^2-3x+0,9\)
a2 - 2a + 6b + b2 = -10
<=> a2 - 2a + 6b + b2 + 10 = 0
<=> ( a2 - 2a + 1 ) + ( b2 + 6b + 9 ) = 0
<=> ( a - 1 )2 + ( b + 3 )2 = 0 (*)
\(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b+3\right)^2\ge0\forall b\end{cases}}\Rightarrow\left(a-1\right)^2+\left(b+3\right)^2\ge0\forall a,b\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}a-1=0\\b+3=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)
Vậy a = 1 ; b = -3
a) Ta có:
\(A\left(x\right)=x^3-30x^2-31x+1\)
\(A\left(x\right)=x^3-31x^2+x^2-31x+1\)
\(A\left(x\right)=\left(x^3-31x^2\right)+\left(x^2-31x\right)+1\)
\(A\left(x\right)=x^2.\left(x-31\right)+x.\left(x-31\right)+1\)
\(A\left(x\right)=\left(x-31\right).\left(x^2+x\right)+1\)
+ Thay \(x=31\) vào biểu thức \(A\left(x\right)\) ta được:
\(A\left(x\right)=\left(31-31\right).\left(31^2+31\right)+1\)
\(A\left(x\right)=0.992+1\)
\(A\left(x\right)=0+1\)
\(A\left(x\right)=1.\)
Vậy giá trị của biểu thức \(A\left(x\right)\) là \(1\) tại \(x=31.\)