Một đội xe dự định cùng 1 số xe cùng loại chở hết 60 tấn hàng. Lúc sắp khởi hành có 3 xe đi làm việc khác. Vì vậy mỗi xe phải chở thêm 1 tấn hàng nữa mới hết số hàng đó. Tính số xe lúc đầu của đội biết rằng khối lượng hàng mỗi xê chở là như nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có gì khó đâu bạn -..-
( 2x + 5 )( 2x - 7 ) - ( -4x - 3 )2 = 16
<=> 2x( 2x - 7 ) + 5( 2x - 7 ) - [ (-4x)2 - 2.3.(-4x) + 32 ] = 16
<=> 4x2 - 14x + 10x - 35 - [ 16x2 + 24x + 9 ] = 16
<=> 4x2 - 4x - 35 - 16x2 - 24x - 9 = 16
<=> -12x2 - 28x - 44 - 16 = 0
<=> -12x2 - 28x - 60 = 0
<=> -4( 3x2 + 7x + 15 ) = 0
<=> 3x2 + 7x + 15 = 0
Ta có : 3x2 + 7x + 15 = 3( x2 + 7/3x + 49/36 ) + 131/12 = 3( x + 7/6 )2 + 131/12 ≥ 131/12 > 0 ∀ x
=> Vô nghiệm
\(4x^2-14x+10x-35-\left(16x^2+24x+9\right)=16\)
\(4x^2-4x-35-16x^2-24x-9-16=0\)
\(-12x^2-28x-60=0\)
\(-4\left(3x^2+7x+15\right)=0\)
\(3x^2+7x+15=0\)
\(3\left(x^2+\frac{7}{3}x+5\right)=0\)
\(x^2+\frac{7}{3}x+5=0\)
\(x^2+2\cdot x\cdot\frac{7}{6}+\left(\frac{7}{6}\right)^2-\left(\frac{7}{6}\right)^2+5=0\)
\(\left(x+\frac{7}{6}\right)^2+\frac{131}{36}=0\)
\(\left(x+\frac{7}{6}\right)^2=-\frac{131}{36}\) ( vô lí vì \(\left(x+\frac{7}{6}\right)^2\ge0\forall x\) )
Vậy phương trình vô nghiệm
a) \(\hept{\begin{cases}\widehat{K}=\widehat{BAD}\\\widehat{AEK}=\widehat{DAE}\end{cases}}\)Mà \(\widehat{BAD}=\widehat{DAE}\)(AD là tia phân giác) => \(\widehat{K}=\widehat{AEK}\Rightarrow\Delta AEK\)cân tại A => AE=AK (đpcm)
b) Vì MK // AD nên \(\frac{AK}{BK}=\frac{DM}{BM}\Rightarrow\frac{AK}{DM}=\frac{BK}{BM}\left(1\right)\)
Vì AD // EM nên \(\frac{CE}{AE}=\frac{CM}{DM}\Rightarrow\frac{CE}{CM}=\frac{AE}{DM}\left(2\right)\)
Vì AK=AE (cmt câu a) nên \(\frac{AK}{DM}=\frac{AE}{DM}\left(3\right)\)
Từ (1)(2) và (3) => \(\frac{BK}{BM}=\frac{CE}{CM}\)
Mà BM=CM (M là trung điểm BC) => BK=CE (đpcm)
A B C E D M
Bài làm:
c thôi à?
Ta có: ΔDBM ~ ΔDME => \(\widehat{DMB}=\widehat{DEM}=\widehat{MEC}\)
ΔDBM ~ ΔMCE (g.g) vì:
+ \(\widehat{DMB}=\widehat{MEC}\) (CM trên)
+ \(\widehat{DBM}=\widehat{MCE}\) (ΔABC cân tại A)
=> \(\frac{BD}{BM}=\frac{MC}{CE}\Leftrightarrow BD.CE=BM.MC\)
Mà BM = MC = 1/2 BC
=> \(BD.CE=\frac{1}{2}BC.\frac{1}{2}BC=\frac{1}{4}BC^2\)
Ta có:\(a+b+c+d=0\)
\(a+c=-\left(b+d\right)\)
\(\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Leftrightarrow a^3+c^3+3ac\left(a+c\right)=-\left[b^3+d^3+3bd\left(b+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)-3ac\left(a+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bd\left(b+d\right)+3ac\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\left(đpcm\right)\)
Sửa đề một chút : Cmr a3 + b3 + c3 + d3 = 3 ( ac - bd ) ( b + d )
a + b + c + d = 0
=> a + c = - ( b + d )
\(\Leftrightarrow\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-d^3-3b^2d-3bd^2\)
\(\Leftrightarrow a^3+3ac\left(a+c\right)+c^3=-b^3-d^3-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\)( đpcm )
x4 - 9x3 + 28x2 - 36x + 16
Thử với x = 4 ta có :
44 - 9.43 + 28.42 - 36.4 + 16 = 0
Vậy 4 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 4
Thực hiện phép chia đa thức cho x - 4 ta được x3 - 5x2 + 8x - 4
Vậy ta phân tích được ( x - 4 )( x3 - 5x2 + 8x - 4 )
Tiếp tục : Thử x = 2 với x3 - 5x2 + 8x - 4
Ta có : 23 - 5.22 + 8.2 - 4 = 0
Vậy 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì x3 - 5x2 + 8x - 4 chia hết cho x - 2
Thực hiện phép chia x3 - 5x2 + 8x - 4 cho x - 2 ta được x2 - 3x + 2
Vậy ta phân tích được ( x - 4 )( x - 2 )( x2 - 3x + 2 )
x2 - 3x + 2 = x2 - x - 2x + 2
= x( x - 1 ) - 2( x - 1 )
= ( x - 2 )( x - 1 )
Vậy : x4 - 9x3 + 28x2 - 36x + 16 = ( x - 4 )( x - 2 )( x - 2 )( x - 1 ) = ( x - 4 )( x - 2 )2( x - 1 )
a. \(x^4-9x^3+28x^2-36x+16\)
\(=x^4-8x^3+20x^2-16x-x^3+8x^2-20x+16\)
\(=x\left(x^3-8x^2+20x-16\right)-\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-6x^2+8x-2x^2+12x-16\right)\)
\(=\left(x-1\right)\left[x\left(x^2-6x+8\right)-2\left(x^2-6x+8\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-2x-4x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)
1. \(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)
\(=\left[\left(a+1\right)\left(a+4\right)\right]\left[\left(a+2\right)\left(a+3\right)\right]+1\)
\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)
\(=\left(a^2+5a+4\right)^2+2\left(a^2+5a+4\right)+1\)
\(=\left(a^2+5a+5\right)^2\)
=> Đpcm
M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1
= [ ( a + 1 )( a + 4 ) ][ ( a + 2 )( a + 3 ) ] + 1
= [ a2 + 5a + 4 ][ a2 + 5a + 6 ] + 1
Đặt t = a2 + 5a + 4
M <=> t[ t + 2 ] + 1
= t2 + 2t + 1
= ( t + 1 )2
= ( a2 + 5a + 4 + 1 )2 = ( a2 + 5a + 5 )2 ( đpcm )
( x2 + x + 1 )( x2 + x + 2 ) - 12 (*)
Đặt t = x2 + x + 1
(*) <=> t( t + 1 ) - 12
= t2 + t - 12
= t2 - 3t + 4t - 12
= t( t - 3 ) + 4( t - 3 )
= ( t - 3 )( t + 4 )
= ( x2 + x + 1 - 3 )( x2 + x + 1 + 4 )
= ( x2 + x - 2 )( x2 + x + 5 )
= ( x2 + 2x - x - 2 )( x2 + x + 5 )
= [ x( x + 2 ) - 1( x + 2 ) ]( x2 + x + 5 )
= ( x + 2 )( x - 1 )( x2 + x + 5 )
Ta có: \(\left(48x^2+8x-1\right)\left(3x^2+5x+2\right)-4\)
\(=\left[\left(48x^2-4x\right)+\left(12x-1\right)\right]\left[\left(3x^2+3x\right)+\left(2x+2\right)\right]-4\)
\(=\left[4x.\left(12x-1\right)+\left(12x-1\right)\right]\left[3x.\left(x+1\right)+2.\left(x+1\right)\right]-4\)
\(=\left(4x+1\right).\left(12x-1\right)\left(3x+2\right).\left(x+1\right)-4\)
\(=\left[\left(4x+1\right)\left(3x+2\right)\right]\left[\left(12x-1\right)\left(x+1\right)\right]-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Gọi \(a=12x^2+11x-1\)\(\Rightarrow\)\(a+3=12x^2+11x+2\)
Ta lại có: \(\left(a+3\right).a-4=a^2+3a-4\)
\(=\left(a^2-a\right)+\left(4a-4\right)\)
\(=a.\left(a-1\right)+4.\left(a-1\right)\)
\(=\left(a+4\right).\left(a-1\right)\)
\(=\left(12a^2+11x-1+4\right).\left(12a^2+11-1-1\right)\)
\(=\left(12a^2+11x+3\right).\left(12a^2+11-2\right)\)
Gọi x là số xe cần chở ban đầu : ( x > 0 )
Mỗi xe sẽ chở : 60/x
Số xe lúc sau : x - 3
Mỗi xe lúc sau chở : 60 / ( x - 3 )
Theo đề , ta có :
\(\frac{60}{x}+1=\frac{60}{x-3}\)
\(\frac{60}{x}+1-\frac{60}{x-3}=0\)
\(\frac{60\left(x-3\right)+1x\left(x-3\right)-60x}{\left(x\right)\left(x-3\right)}=0\left(\orbr{\begin{cases}x\ne0\\x\ne3\end{cases}}\right)\)
\(60x-180+x^2-3x-60x=0\)
\(x^2-3x-180=0\)
\(x^2-15x+12x-180=0\)
\(x\left(x-15\right)+12\left(x-15\right)=0\)
\(\left(x-15\right)\left(x+12\right)=0\)
\(\orbr{\begin{cases}x-15=0\\x+12=0\end{cases}}\)
\(\orbr{\begin{cases}x=15\\x=-12\end{cases}}\) ( nhận 15 loại -12 )
Vậy số xe lúc ban đầu là 15