Tìm x,y,z biết:\(\dfrac{x}{3}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)và\(x^2\)-\(y^2\)+\(z^2\)=-60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: AK\(\perp\)BC
NM\(\perp\)BC
Do đó: AK//NM
Xét ΔDKA vuông tại K và ΔDMN vuông tại M có
DA=DN
\(\widehat{DÁK}=\widehat{DNM}\)(hai góc so le trong, AK//MN)
Do đó: ΔDKA=ΔDMN
=>DK=DM và AK=MN
Xét tứ giác AKNM có
AK//MN
AK=MN
Do đó: AKNM là hình bình hành
b: Xét ΔAEN có
K,D lần lượt là trung điểm của AE,AN
=>KD là đường trung bình của ΔAEN
=>KD//EN
=>EN//BC
Ta có: AK//MN
mà E\(\in\)AK
nên AE//MN
Xét tứ giác KENM có
KE//NM
KM//EN
Do đó: KENM là hình bình hành
Hình bình hành KENM có \(\widehat{MKE}=90^0\)
nên KENM là hình chữ nhật
c: Xét tứ giác ABNC có
D là trung điểm chung của AN và BC
=>ABNC là hình bình hành
=>BN=AC
Xét ΔCAE có
CK là đường cao
CK là đường trung tuyến
Do đó: ΔCAE cân tại C
=>CA=CE
mà CA=BN
nên CE=BN
Xét tứ giác BCNE có NE//BC
nên BCNE là hình thang
Hình thang BCNE có BN=CE
nên BCNE là hình thang cân
d: Ta có: ΔAEN vuông tại E
mà ED là đường trung tuyến
nên DE=DN
=>ΔDEN cân tại D
Diện tích một mặt của hình lập phương lớn là:
294 : 6 = 49(cm2)
Ta có: 49 = 7 x 7
Vậy cạnh của hình lập phương lớn là 7 cm
Phải xếp số hình lập phương nhỏ là:
7 x 7 x 7 = 343(hình)
Đ/S: 343 hình
Chúc bạn học tốt
Diện tích một mặt của hình lập phương lớn là:
294 : 6 = 49(cm2)
Ta có: 49 = 7 x 7
Vậy cạnh của hình lập phương lớn là 7 cm
Phải xếp số hình lập phương nhỏ là:
7 x 7 x 7 = 343(hình)
Đ/S: 343 hình
\(2x=\dfrac{y}{3}=\dfrac{z}{5}\)
=>\(\dfrac{x}{0,5}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà \(\dfrac{x+y-z}{2}=-20\)
nên \(\dfrac{x}{0,5}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{0,5+3-5}=\dfrac{-40}{-1,5}=\dfrac{40}{1,5}\)
=>\(x=\dfrac{20}{1,5}=\dfrac{40}{3};y=\dfrac{40}{1,5}\cdot3=80;z=40\cdot\dfrac{5}{1,5}=40\cdot\dfrac{10}{3}=\dfrac{400}{3}\)
\(\left(2x-15\right)^3=\left(2^2\cdot3^3-2^3\cdot3^2\right):\left(-36\right)\)
=>\(\left(2x-15\right)^3=\left(4\cdot27-8\cdot9\right):\left(-36\right)\)
=>\(\left(2x-15\right)^3=-1\)
=>2x-15=-1
=>2x=14
=>x=14:2=7
Để chứng minh rằng �<1A<1, chúng ta có thể tính tổng �A và so sánh nó với 1.
A=1011+1021+…+2001
Để giảm thiểu �A, chúng ta sẽ tìm cận dưới bằng cách thay thế mỗi số chia 11 cho số lớn nhất trong dãy. Trong trường hợp này, số lớn nhất là 101101, nên:
A>1011×(200−101+1)
A>1011×100
A>101100
A>101100>0.99
Do đó, �<1A<1. Chứng minh này dựa trên việc thay thế mỗi số chia cho số lớn nhất trong dãy, điều này giúp giảm giá trị tổng �A và chứng minh rằng �<1A<1.
ko biết bài trên có đúng ko
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=k\)
=>\(x=3k;y=5k;z=7k\)
\(x^2-y^2+z^2=-60\)
=>\(\left(3k\right)^2-\left(5k\right)^2+\left(7k\right)^2=-60\)
=>\(9k^2-25k^2+49k^2=-60\)
=>\(33k^2=-60\)
=>\(k^2=-\dfrac{60}{33}\left(vôlý\right)\)
=>\(\left(x,y,z\right)\in\varnothing\)