có tồn tại hay không các số tự nhiên a,b thỏa mãn:
(3a+2b)(7a+3b)=\(\overline{18x03x2015}\)(x là chữ số bất kì từ 0 đến 9)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{17}+\dfrac{1}{22}+\dfrac{5}{3}-\dfrac{22}{17}+\dfrac{14}{17}\)
\(=\left(\dfrac{3}{17}+\dfrac{14}{17}-\dfrac{22}{17}\right)+\dfrac{113}{66}\)
\(=\dfrac{-5}{17}+\dfrac{113}{66}=\dfrac{-5\cdot66+113\cdot17}{17\cdot66}=\dfrac{1591}{1122}\)
Olm chào em, việc em có được học sinh giỏi không còn phụ thuộc vào nhiều yếu tố lắm.
Lời giải:
Số học sinh được tuyển vào ít hơn: $450:3=150$ (học sinh)
Vậy số học sinh được tuyển vào là 1 số có ba chữ số nhỏ hơn 150 và có tích các chữ số bằng 12. Đặt số đó là $\overline{1ab}$ với $a$ không vượt quá 5.
Ta có:
$1\times a\times b=12$
$a\times b=12$
$a$ không vượt quá 5 và $b$ không vượt quá $9$ nên xảy ra các trường hợp sau:
$a=3, b=4$
$a=4, b=3$
$a=2, b=6$
Mà $\overline{1ab}$ chia hết cho 3 nên $1+a+b\vdots 3$
Thử các trường hợp trên ta thấy $a=2, b=6$ là trường hợp duy nhất thỏa mãn
Vậy trường đó tuyển vào $126$ học sinh.
-17/20.6,24-17/20.3,76
=-17/20.(6,24+3,76)
=-17/20.10
=-17/2
\(S=\dfrac{3^2}{1.3}+\dfrac{3^2}{3.5}+\dfrac{3^2}{5.7}+...+\dfrac{3^2}{2021.2023}\)
\(\dfrac{2}{3^2}S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\)
\(\dfrac{2}{9}S=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2023-2021}{2021.2023}\)
\(\dfrac{2}{9}S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(\dfrac{2}{9}S=1-\dfrac{1}{2023}\)
\(\dfrac{2}{9}S=\dfrac{2022}{2023}\)
\(S=\dfrac{2022}{2023}\div\dfrac{2}{9}\)
\(S=\dfrac{9099}{2023}\)
S = \(\dfrac{3^2}{1.3}\) + \(\dfrac{3^2}{3.5}\) + \(\dfrac{3^2}{5.7}\)+...+ \(\dfrac{3^2}{2021.2023}\)
S = \(\dfrac{3^2}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{2021.2023}\))
S = \(\dfrac{9}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{2021}\) - \(\dfrac{1}{2023}\))
S = \(\dfrac{9}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{2023}\))
S = \(\dfrac{9}{2}\).\(\dfrac{2022}{2023}\)
S = \(\dfrac{9099}{2023}\)
Giải:
a; Số học sinh xếp loại tốt là:
45 x \(\dfrac{7}{15}\) = 21 (học sinh)
Số học sinh xếp loại khá là:
21 x \(\dfrac{5}{7}\) = 15 (học sinh)
Số học sinh xếp loại đạt là:
45 - 21 - 15 = 9 (học sinh)
b; Tỉ số phần trăm số học sinh khá so với học sinh cả lớp là:
15 : 45 x 100% = 33,33%
Kết luận:..
Bài 6:
\(P=\dfrac{n+5}{n-4}=\dfrac{n-4+9}{n-4}=1+\dfrac{9}{n-4}\)
Để P max thì n-4=1
=>n=5
=>\(P_{max}=1+\dfrac{9}{5-4}=1+9=10\)
Để P min thì n-4=-1
=>n=3
=>\(P_{min}=1+\dfrac{9}{-1}=-8\)
Bài 7:
a: \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}}{\dfrac{2020}{1}+\dfrac{2019}{2}+...+\dfrac{1}{2020}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}}{\left(1+\dfrac{2019}{2}\right)+\left(1+\dfrac{2018}{3}\right)+...+\left(1+\dfrac{1}{2020}\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}}{\dfrac{2021}{2}+\dfrac{2021}{3}+...+\dfrac{2021}{2021}}=\dfrac{1}{2021}\)
hgbldfhfuh