B1, tính:
a, (x-4).(x+4)
b, (x-5).(x+5)
B2, viết các đa thức sau dưới dạng bình phương của 1 tổng:
a, x^2 - 2x + 1
b, x^2 + 2x + 1
c, x^2 - 6x + 9
CÁC BẠN GIÚP MK VS, TOÁN LỚP 8 Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bày này chỉ có đạt giá trị lớn nhất thôi nhé ! Bạn xem lại đề !
D E B A K M C
Lời giải :
Gọi \(M\) là trung điểm của \(BC.\) \(\Rightarrow AM\) không đổi.
Kẻ \(KM\perp DE\)
Khi đó tứ giác \(BDEC\) là hình thang. \(\left(BD//KM//EC\right)\)
Xét hình thang \(BDCE\) có : \(M\) là trung điểm của \(BC,\) \(BD//KM//EC\) ( cmt )
\(\Rightarrow K\) là trung điểm của \(DE\)
\(\Rightarrow KM\) là đường trung bình của hình thang \(BDEC\)
\(\Rightarrow BD+EC=2.KM\)
Mặt khác ta có : \(KM\le AM\) nên \(BD+EC\le2AM\)
Dấu "=" xảy ra \(\Leftrightarrow xy\perp AM\)
Vậy \(BD+CE\) đạt giá trị lớn nhất là \(2AM\) \(\Leftrightarrow xy\perp AM\)
A B C M E c
Gọi Cc là tia phân giác ngoài đỉnh C
Trên tia đổi của CB lấy điểm E sao cho AC = EC
=> \(\Delta ACE\)cân tại C
Mà Cc là tia phân giác của góc \(\widehat{ACE}\)
=> Cc vừa là Tia phân giác vừa là đường trung trực của AE
=> MA = ME ( tc)
Ta có \(AC+CB\Leftrightarrow EC+CB\left(AC=EC\right)=BE\left(1\right)\)
\(AM+BM\Leftrightarrow ME+BM\left(2\right)\)
Xét tam giác BME có
\(BE< ME+BM\left(dl\right)\left(3\right)\)
Từ (1); (2) và (3)
\(\Rightarrow AC+BC< AM+BM\left(đpcm\right)\)
a) \(x^2+\frac{1}{3}+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2\)
Thay \(x=\frac{-7}{6}\)vào biểu thức ta được: \(\left(\frac{-7}{6}+\frac{1}{6}\right)^2=\left(-1\right)^2=1\)
b) \(x^3-9x^2+27x-27=\left(x-3\right)^3\)
Thay \(x=103\)vào biểu thức ta được: \(\left(103-3\right)^2=100^2=10000\)
c) \(4x^2-y^2-2y-1=4x^2-\left(y^2+2y+1\right)\)
\(=4x^2-\left(y+1\right)^2=\left(2x-y-1\right)\left(2x+y+1\right)\)
Thay \(x=234\)và \(y=465\)vào biểu thức ta được:
\(\left(2.234-465-1\right)\left(2.234+465+1\right)=2.934=1868\)
a) Ta có: \(x^2+\frac{1}{3}x+\frac{1}{36}=x^2+2\cdot\frac{1}{6}\cdot x+\left(\frac{1}{6}\right)^2\)
\(=\left(x+\frac{1}{6}\right)^2\) , tại \(x=-\frac{7}{6}\) thì giá trị của BT là:
\(\left(-\frac{7}{6}+\frac{1}{6}\right)^2=1^2=1\)
b) Ta có: \(x^3-9x^2+27x-27=\left(x-3\right)^3\)
Tại x = 103 thì giá trị của BT là:
\(\left(103-3\right)^3=100^3=1000000\)
c) Ta có: \(4x^2-y^2-2y-1\)
\(=\left(2x\right)^2-\left(y+1\right)^2\)
\(=\left(2x-y-1\right)\left(2x+y+1\right)\)
Tại x = 234, y = 465 thì giá trị của BT là:
\(\left(2\cdot234-465-1\right)\left(2\cdot234+465+1\right)\)
\(=2\cdot934=1868\)
Câu a bạn chứng minh được rồi là xong nha !!!!!!!
Câu b)
\(B=\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\)
\(B=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)
Ta lần lượt áp dụng BĐT Cauchy 2 số và sử dụng câu a sẽ được:
=> \(B\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{8.3\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}\)
=> \(B\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
DẤU "=" Xảy ra <=> \(a=b=c\)
Vậy ta có ĐPCM !!!!!!!!
3x( y + 2 ) - 3( 1 - 2x ) ( như này đúng k -..- )
= 3( xy + 2x ) - 3( 1 - 2x )
= 3[ xy + 2x - ( 1 - 2x ) ]
= 3( xy + 2x - 1 + 2x )
= 3( xy + 4x - 1 )
x2 - y2 - 2x + 2y
= ( x2 - y2 ) - 2( x - y )
= ( x - y )( x + y ) - 2( x - y )
= ( x - y )( x + y - 2 )
2x + 2y - x2 - xy
= 2( x + y ) - x( x + y )
= ( x + y )( 2 - x )
\(2x-\left(2x^2+x\right)\le15-\left(2x^2+4x\right)\)
\(\Leftrightarrow x=15-4x\Leftrightarrow5x=15\Leftrightarrow x=3\)Vậy phương trình có nghiệm là x=3
Ta có: \(2x-x\left(2x+1\right)\le15-2x\left(x+2\right)\)
\(\Leftrightarrow2x-2x^2-x\le15-2x^2-4x\)
\(\Leftrightarrow x-2x^2+2x^2+4x\le15\)
\(\Leftrightarrow5x\le15\)
\(\Leftrightarrow x\le3\)
Vậy \(S=\left\{\forall x\inℝ/x\le3\right\}\)
Gọi độ dài chiều rộng là a
Độ dài chiều dài là 4a
Ta có phương trình 4a*a -(4a+10)(a-5) - 4a*a=150
<=> 4a2 -(4a2 - 10a - 50)=150
<=> 10a=100 <=> a=10 <=> 4a=40
Vậy chiều rộng là 10m chiều dài là 40m
Bài giải
Gọi chiều rộng là a
Độ dài chiều dài là 4a
Ta có phương trình 4a*a -(4a+10)(a-5) - 4a*a=150
<=> 4a2 -(4a2 - 10a - 50)=150
<=> 10a=100 <=> a=10 <=> 4a=40
Đáp số : chiều dài 40 , chiều rộng 10.
\(4x^2-81=0\Leftrightarrow4x^2=81\Leftrightarrow x^2=\frac{81}{4}\Leftrightarrow x=\pm\frac{9}{2}\)
\(4x^2-81=0\)
\(4x^2=81\)
\(x^2=81:4\)
\(x^2=\left(\frac{9}{2}\right)^2\)
\(\Rightarrow x=\frac{9}{2}\)
Học tốt
Bài 1 :
a) \(\left(x-4\right)\left(x+4\right)=x^2-16\)
b) \(\left(x-5\right)\left(x+5\right)=x^2-25\)
Bài 2 :
a) \(x^2-2x+1=\left(x-1\right)^2\)
b) \(x^2+2x+1=\left(x+1\right)^2\)
c) \(x^2-6x+9=\left(x-3\right)^2\)
1) a. (x - 4)(x + 4) = x2 - 4x + 4x - 16 = x2 - 16
b. (x - 5)(x + 5) = x2 - 5x + 5x - 25 = x2 - 25
2. x2 - 2x + 1 = x2 - x - x + 1 = x(x - 1) - (x - 1) = (x - 1)2
(x2 + 2x + 1) = x2 + x + x + 1 = x(x + 1) + (x + 1) = (x + 1)2
x2 - 6x + 9 = x2 - 3x - 3x + 9 = x(x - 3) -3(x - 3) = (x - 3)2