Cho A = (x - 2)(x2 + 4x - 2) - x2(x + 1)
Với giá trị nào của A thì x > -21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
Gọi H là trực tâm tam giác ABC và O là giao 3 đường trung trực của tg ABC
=> O là tâm đường tròng ngoại tiếp tg ABC
Nối A với O kéo dài cắt (O) tại D
Xét tứ giác BHCD có
BH vuông góc AC
^ACD=90 (góc nt chắn nửa đường tròn)
=> CD vuông góc AC
=> BH//CD (BH, CD cùng vuông góc với AC) (1)
CH vuông góc AB
^ABD=90 (góc nt chắn nửa đường tròn)
=> BD vuông góc AB
=> CH//BD (CH, BD cùng vuông góc với AB) (2)
Từ (1) và (2) => BHCD là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau thì là hbh)
Gọi M là trung điểm BC => OM là đường trung trực của tg ABC thuộc cạnh BC => OM vuông góc với BC
AH vuông góc BC
=> AH//OM (cùng vuông góc với BC)
Xét hình bình hành BHCD
Do M là trung điểm của BC => M cũng là trung điểm của HD (trong hình bình hành hai đường chéo cắt nhau tại trung điểm mỗi đường)
=> Áp dụng talet trong tam giác \(\Rightarrow\frac{DM}{DH}=\frac{OM}{AH}=\frac{1}{2}\Rightarrow AH=2.OM\)
a) x2 - 12x + 33
= ( x2 - 12x + 36 ) - 3
= ( x - 6 )2 - 3 ≥ -3 ∀ x
Đẳng thức xảy ra <=> x - 6 = 0 => x = 6
Vậy GTNN của biểu thức = -3 <=> x = 6
b) 9x2 - 6x + 5
= ( 9x2 - 6x + 1 ) + 4
= ( 3x - 1 )2 + 4 ≥ 4 ∀ x
Đẳng thức xảy ra <=> 3x - 1 = 0 => x = 1/3
Vậy GTNN cua biểu thức = 4 <=> x = 1/3
c) x2 + x + 3
= ( x2 + x + 1/4 ) + 11/4
= ( x + 1/2 )2 + 11/4 ≥ 11/4 ∀ x
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
Vậy GTNN của biểu thức = 11/4 <=> x = -1/2
Đặt \(x-1=a;x-2=b;3-2x=c\)
\(\Rightarrow a^3+b^3-\left(a+b\right)^3=0\)
Đến đây thì dễ rồi :))
Cách trâu bò nhất : Phá tung nó ra =))
( x - 1 )3 + ( x - 2 )3 + ( 3 - 2x )3 = 0
<=> x3 - 3x2 + 3x - 1 + x3 - 6x2 + 12x - 8 - 8x3 + 36x2 - 54x + 27 = 0
<=> ( x3 + x3 - 8x3 ) + ( -3x2 - 6x2 + 36x2 ) + ( 3x + 12x - 54x ) + ( -1 - 8 + 27 ) = 0
<=> -6x3 + 27x2 - 39x + 18 = 0
<=> -3( 2x3 - 9x2 + 13x - 6 ) = 0
<=> -3( 2x3 - 3x2 - 6x2 + 9x + 4 - 6 ) = 0
<=> -3[ ( 2x3 - 3x2 ) - ( 6x2 - 9x ) + ( 4x - 6 ) ] = 0
<=> -3[ x2( 2x - 3 ) - 3x( 2x - 3 ) + 2( 2x - 3 ) ] = 0
<=> -3( 2x - 3 )( x2 - 3x + 2 ) = 0
<=> -3( 2x - 3 )( x2 - x - 2x + 2 ) = 0
<=> -3( 2x - 3 )[ x( x - 1 ) - 2( x - 1 ) ] = 0
<=> -3( 2x - 3 )( x - 1 )( x - 2 ) = 0
<=> \(\hept{\begin{cases}2x-3=0\\x-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\x=1\\x=2\end{cases}}\)( Thay bằng dấu hoặc hộ mình nhé )
Vậy ...
xét tứ giác ABCD, có: góc A + B + C + D=360*
ta có: A/1 = B/2 = C/3 = D/4
xét tc dãy ts = nhau, có:
A+B+C+D/1+2+3+4 = 360/10 = 36
=> A=36
=> B=36.2=72
=> C=36.3=108
=>D=36.4=144
Xét tứ giác ABCD ta có :
^A + ^B + ^C + ^D = 3600(định lí tổng các góc trong một tứ giác)
Mà ^A : ^B : ^C : ^D = 1 : 2 : 3 : 4 => \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{D}}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{D}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360^0}{10}=36^0\)
Từ đó suy ra ^A = 360 . 1 = 360 , ^B = 360 . 2 = 720 , ^C = 360 . 3 = 1080 , ^D = 360 . 4 = 1440
Đến đây tự kết luận
\(A=\left(x-2\right)\left(x^2+4x-2\right)-x^2\left(x+1\right)\)
\(=x^3+4x^2-2x-2x^2-8x+4-x^3-x^2=x^2-10x+4\)
Với giá trị \(x^2-10x+4\)thì x > -21
A = ( x - 2 )( x2 + 4x - 2 ) - x2( x + 1 )
= x( x2 + 4x - 2 ) - 2( x2 + 4x - 2 ) - x3 - x2
= x3 + 4x2 - 2x - 2x2 - 8x + 4 - x3 - x2
= ( x3 - x3 ) + ( 4x2 - 2x2 - x2 ) + ( -2x - 8x ) + 4
= x2 - 10x + 4
A > -21
<=> x2 - 10x + 4 > -21
<=> x2 - 10x + 4 + 21 > 0
<=> x2 - 10x + 25 > 0
<=> ( x - 5 )2 > 0
<=> \(\orbr{\begin{cases}x-5>0\\x-5< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>5\\x< 5\end{cases}}\)
Vậy với x > 5 hoặc x < 5 thì A > -21
<=>