a) (2x+3)2 - 2(2x+3)(2x+5)+(2x+5)2
b) ( x2 +x +1)(x2-x+1)(x2 -1)
c) (x+y)2 + (x-y)2
d) 2(x-y) (x+y)+(x+y)2+ (x-y)2
e) (x-y+z)2 +( z-y)2 +2(x-y+z)(y-z)
f) (a+b-c)2+ (a-b+c)2 - 2(b-c)2
g) (a+b+c)2 +(a-b-c)2 +(b-c-a)2 +(c-a-b)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(A=100-2x-x^2=-\left(x+1\right)^2+101\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+101\le101\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy maxA = 101 <=> x = - 1
b. \(B=-3x^2+x=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)
Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\) \(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)^2=0\Leftrightarrow x=\frac{1}{6}\)
Vậy maxB = 1/12 <=> x = 1/6
c. \(C=3x\left(1-x\right)=3x-3x^2=-3\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\le\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
Vậy maxC = 3/4 <=> x = 1/2
A = 100 - 2x - x2
= -( x2 + 2x + 1 ) + 101
= -( x + 1 )2 + 101 ≤ 101 ∀ x
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxA = 101 <=> x = -1
B = -3x2 + x
= -3( x2 - 1/3x + 1/36 ) + 1/12
= -3( x - 1/6 ) + 1/12 ≤ 1/12 ∀ x
Đẳng thức xảy ra <=> x - 1/6 = 0 => x = 1/6
=> MaxB = 1/12 <=> x = 1/6
C = 3x( 1 - x )
= -3x2 + 3x
= -3( x2 - x + 1/4 ) + 3/4
= -3( x - 1/2 )2 + 3/4 ≤ 3/4 ∀ x
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MaxC = 3/4 <=> x = 1/2
\(D=12x-5-x^2=-\left(x-6\right)^2+31\)
Vì \(\left(x-6\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-6\right)^2+31\le31\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-6\right)^2=0\Leftrightarrow x=6\)
Vậy maxD = 31 <=> x = 6
D = 12x - 5 - x2
= -( x2 - 12x + 36 ) + 31
= -( x - 6 )2 + 31 ≤ 31 ∀ x
Đẳng thức xảy ra <=> x - 6 = 0 => x = 6
=> MaxD = 31 <=> x = 6
A = 2x2 + y2 - 2xy - 2y + 2000 = (x2 - 2xy + y2) + 2(x - y) + 1 + (x2 + 2x + 1) + 1998
= (x - y)2 + 2(x - y) + 1 + (x + 1)2 + 1998 = (x - y + 1)2 + (x + 1)2 1998 \(\ge\)1998 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\x+1=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x+1\\z=-1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
Vậy MinA = 1998 khi x = -1 và y = .0
b) B = x2 + 5y2 - 2xy + 6x - 18y + 50 = (x2 - 2xy + y2) + 6(x - y) + 9 + (4y2 - 12y + 9) + 32
= (x - y)2 + 6(x - y) + 9 + (2y - 3)2 + 32 = (x - y + 3)2 + (2y - 3)2 + 32 \(\ge\)32 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\)<=> \(\hept{\begin{cases}x=y-3\\y=\frac{3}{2}\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy MinB = 32 khi x = -3/2 và y = 3/2
c) C = 3x2 + x + 4 = 3(x2 + 1/3x + 1/36) + 47/12 = 3(x + 1/6)2 + 47/12 > = 47/12 với mọi x
Dấu "=" xảy ra <=> x + 1/6 = 0 <=> x = -1/6
Vậy MinC = 47/12 khi x = -1/6
A = 2y2 + x2 - 2xy - 2y + 2000 ( vầy mới tính được bạn nhé ;-; )
= ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + 1999
= ( x - y )2 + ( y - 1 )2 + 1999
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(y-1\right)^2+1999\ge1999\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-1=0\end{cases}}\Leftrightarrow x=y=1\)
=> MinA = 1999 <=> x = y = 1
B = x2 + 5y2 - 2xy + 6x - 18y + 50
= ( x2 - 2xy + y2 + 2x - 6y + 9 ) + ( 4y2 - 12y + 9 ) + 32
= [ ( x2 - 2xy + y2 ) + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32
= [ ( x - y )2 + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32
= ( x - y + 3 ) + ( 2y - 3 )2 + 32
\(\hept{\begin{cases}\left(x-y+3\right)^2\ge0\forall x,y\\\left(2y-3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y+3\right)^2+\left(2y-3\right)^2+32\ge32\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
=> MinB = 32 <=> x = -3/2 ; y = 3/2
C = 3x2 + x + 4
= 3( x2 + 1/3x + 1/36 ) + 47/12
= 3( x + 1/6 )2 + 47/12 ≥ 47/12 ∀ x
Đẳng thức xảy ra <=> x + 1/6 = 0 => x = -1/6
=> MinC = 47/12 <=> x = -1/6
a) ( 2x + 3 )2 - 2( 2x + 3 )( 2x + 5 ) + ( 2x + 5 )2
= [ ( 2x + 3 ) - ( 2x + 5 ) ]2
= ( 2x + 3 - 2x - 5 )2
= (-2)2 = 4
b) ( x2 + x + 1 )( x2 - x + 1 )( x2 - 1 )
= ( x4 - x3 + x2 + x3 - x2 + x + x2 - x + 1 )( x2 - 1 )
= ( x4 + x2 + 1 )( x2 - 1 )
= x6 - x4 + x4 - x2 + x2 - 1
= x6 - 1
c) ( x + y )2 + ( x - y )2
= x2 + 2xy + y2 + x2 - 2xy + y2
= 2x2 + 2y2 = 2( x2 + y2 )
d) 2( x - y )( x + y ) + ( x + y )2 + ( x - y )2
= [ ( x + y ) + ( x - y ) ]2
= ( x + y + x - y )2
= ( 2x )2 = 4x2
e) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )
= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
f) ( a + b - c )2 + ( a - b + c )2 - 2( b - c )2
= [ ( a + b ) - c ]2 + [ ( a - b ) + c ]2 - 2( b2 - 2bc + c2 )
= [ ( a + b )2 - 2( a + b )c + c2 ] + [ ( a - b )2 + 2( a - b )c + c2 ] - 2b2 + 4bc - 2c2
= a2 + b2 + c2 + 2ab - 2bc - 2ca + c2 + a2 + b2 + c2 - 2ab + 2bc + 2ac - 2b2 + 4bc - 2c2
= 2a2
g) ( a + b + c )2 + ( a - b - c )2 + ( b - c - a )2 + ( c - a - b )2
= [ ( a + b ) + c ]2 + [ ( a - b ) - c ]2 + [ ( b - c ) - a ]2 + [ ( c - a ) - b ]2
= [ ( a + b )2 + 2( a + b )c + c2 ] + [ ( a - b )2 - 2( a - b )c + c2 ] + [ ( b - c )2 - 2( b - c )a + a2 ] + [ ( c - a )2 - 2( c - a )b + b2 ]
= [ a2 + b2 + c2 + 2ab + 2bc + 2ca ] + [ a2 + b2 + c2 - 2ab + 2bc - 2ca ] + [ a2 + b2 + c2 - 2ab - 2bc + 2ca ] + [ a2 + b2 + c2 + 2ab - 2bc - 2ca ]
= 4a2 + 4b2 + 4c2
Có vẻ hơi dài dòng nhỉ :( Nhưng như này là kĩ nhất đấy :)