Cho 50 điểm trong đó chỉ có 4 điểm thẳng hàng, cứ qua hai điểm vẽ được một đường thẳng Hỏi có tất cả bao nhiêu đường thẳng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi số nguyên dương n ta có:
\(\left(2n\right)^2>\left(2n\right)^2-1\)
\(\Rightarrow\left(2n\right)^2>\left(2n-1\right)\left(2n+1\right)\)
\(\Rightarrow\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
Áp dụng:
\(A< \dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(A< \dfrac{1}{2}\left(1-\dfrac{1}{101}\right)< \dfrac{1}{2}.1\)
\(A< \dfrac{1}{2}\) (đpcm)
a: Vì ABCD là hình thang có \(AB=\dfrac{1}{3}CD\)
nên \(S_{BAD}=\dfrac{1}{3}\cdot S_{BDC}\)
Vì BD=2DE
nên \(BD=\dfrac{2}{3}BE\)
=>\(S_{BAD}=\dfrac{2}{3}\cdot S_{ABE}\)
=>\(S_{ABE}=\dfrac{3}{2}\cdot S_{BAD}\)
Vì DB=2DE
nên \(S_{CBD}=2\cdot S_{CDE}\)
=>\(S_{CDE}=\dfrac{1}{2}\cdot S_{CBD}=\dfrac{1}{2}\cdot3\cdot S_{BAD}=\dfrac{3}{2}\cdot S_{BAD}\)
=>\(S_{ABE}=S_{CDE}\)
Bài 27:
a: Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE
\(\widehat{BDE}\) là góc nội tiếp chắn cung BE
Do đó: \(\widehat{ABE}=\widehat{BDE}\)
Xét ΔABE và ΔADB có
\(\widehat{ABE}=\widehat{ADB}\)
\(\widehat{BAE}\) chung
Do đó: ΔABE~ΔADB
=>\(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)
=>\(AB^2=AD\cdot AE\)
c:
Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: OA là phân giác của góc BOC
=>\(\widehat{BOC}=2\cdot\widehat{BOA}=120^0\)
=>\(sđ\stackrel\frown{BC}=120^0\)
Bài 28:
a: Xét (O) có
ΔACM nội tiếp
AM là đường kính
Do đó: ΔACM vuông tại C
=>\(\widehat{ACM}=90^0\)
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AMC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AMC}\)
Xét ΔADB vuông tại D và ΔACM vuông tại C có
\(\widehat{ABD}=\widehat{AMC}\)
Do đó: ΔADB~ΔACM
=>\(\widehat{DAB}=\widehat{CAM}\)
b: Xét tứ giác ABDE có \(\widehat{AEB}=\widehat{ADB}=90^0\)
nên ABDE là tứ giác nội tiếp
c: ABDE là tứ giác nội tiếp
=>\(\widehat{BAE}+\widehat{BDE}=180^0\)
mà \(\widehat{BDE}+\widehat{EDM}=180^0\)(kề bù)
nên \(\widehat{EDM}=\widehat{BAM}\left(1\right)\)
Xét (O) có
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(\widehat{BCM}\) là góc nội tiếp chắn cung BM
Do đó: \(\widehat{BAM}=\widehat{BCM}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{BCM}=\widehat{EDC}\)
=>ED//MC
\(\dfrac{a}{7}+\dfrac{1}{14}=\dfrac{-1}{b}\)
=>\(\dfrac{2a+1}{14}=\dfrac{-1}{b}\)
=>\(\left(2a+1\right)\cdot b=-14\)
mà 2a+1 lẻ
nên \(\left(2a+1\right)\cdot b=1\cdot\left(-14\right)=\left(-1\right)\cdot14=7\cdot\left(-2\right)=\left(-7\right)\cdot2\)
=>\(\left(2a+1;b\right)\in\left\{\left(1;-14\right);\left(-1;14\right);\left(7;-2\right);\left(-7;2\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(0;-14\right);\left(-1;14\right);\left(3;-2\right);\left(-4;2\right)\right\}\)
Có 2 trường hợp xảy ra:
- Trường hợp 1: A và B nằm khác phía so với O, ta có hình vẽ sau:
a) Do A và B nằm khác phía so với điểm O nên điểm O nằm giữa hai điểm A và B
b) Do O nằm giưa A và B
⇒ AB = OA + OB
= 8 + 4 = 12 (cm)
c) Do O nằm giữa A và B nên B không là trung điểm của OA
- Trường hợp 2: Điểm A và điểm B nằm cùng phía so với điểm O, ta có hình vẽ:
a) Do OB < OA (4 cm < 8 cm)
⇒ B nằm giữa O và A
b) Do B nằm giữa O và A nên:
OB + AB = OA
⇒ AB = OA - OB
= 8 - 4
= 4 (cm)
c) Do B nằm giữa O và A
Và OB = AB = 4 (cm)
⇒ B là trung điểm của OA
a: TH1: OA và OB là hai tia đối nhau
=>O nằm giữa A và B
TH2: B nằm giữa O và A
=>OB+BA=OA
=>4+BA=8
=>BA=4(nhận)
=>Có thể xảy ra
TH3: A nằm giữa B và O
=>BA+AO=BO
=>4=BA+8
=>BA=-4(loại)
Vậy: O nằm giữa A và B hoặc B nằm giữa A và O
b: TH1: O nằm giữa A và B
=>OA+OB=AB
=>AB=4+8=12(cm)
TH2: B nằm giữa A và O
=>BA+BO=AO
=>BA+4=8
=>BA=4(cm)
c: TH1: O nằm giữa A và B
Vì BA<>BO nên B không là trung điểm của AO
TH2: B nằm giữa A và O
Vì BA=BO(=4cm)
và B nằm giữa A và O
nên B là trung điểm của AO
Số điểm còn lại là 50-4=46(điểm)
TH1: Lấy 1 điểm trong 4 điểm thẳng hàng, lấy 1 điểm trong 46 điểm còn lại
=>Có \(46\cdot4=184\left(đường\right)\)
TH2: Lấy 2 điểm bất kì trong 4 điểm thẳng hàng
=>Có 1 đường thẳng
TH3: Lấy 2 điểm bất kì trong 46 điểm còn lại
=>Có \(C^2_{46}=1035\left(đường\right)\)
Số đường thẳng tất cả là:
1035+1+184=1220(đường)