làm kkksjsdjdddd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)
suy ra \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12+15}=\frac{10}{35}=\frac{2}{7}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{2}{7}.8=\frac{16}{7}\\y=\frac{2}{7}.12=\frac{24}{7}\\z=\frac{2}{7}.15=\frac{30}{7}\end{cases}}\)
ta có : \(\frac{x}{7}=\frac{y}{4}=\frac{z}{2}\) = \(\frac{3z}{6}\)
theo tính chất của dãy tỉ số ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{3z}{6}\)= \(\frac{x-3z}{7-6}\)= \(\frac{9}{1}=9\)
\(\frac{x}{7}=9\Rightarrow x=9\times7=63\)
\(\frac{y}{4}=9\Rightarrow y=9\times4=36\)
\(\frac{z}{2}=9\Rightarrow z=9\times2=18\)
Bài 4.
\(\left|x-1\right|+\left|y-2\right|+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}\)
Bài 3.
\(\left|x-1\right|+\left|2x-2\right|+\left|4x-4\right|+\left|5x-5\right|=36\)
\(\Leftrightarrow\left|x-1\right|+2\left|x-1\right|+4\left|x-1\right|+5\left|x-1\right|=36\)
\(\Leftrightarrow12\left|x-1\right|=36\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)