Phân tích đa thức thành nhân tử
a_\(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)
b) \(3a^2x-3a^2y+abx-aby\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x3 + y3
= (x + y)(x2 - xy + y2)
= (x + y)(x2 + 2xy + y2) - 3xy(x + y)
= (x + y)3 - 6xy
= 23 - 6xy
= 8 - 6xy
Lại có x + y = 2
=> (x + y)2 = 4
=> x2 + y2 + 2xy = 4
=> 2xy = -6
=> xy = -3
Khi đó x3 - y3 = 8 + 6.3 = 26
b) a + b = 7
=> a = 7 - b
Khi đó ab = 12
<=> (7 - b).b = 12
=> 7b - b2 = 12
=> 7b - b2 - 12 = 0
=> -(b2 - 7b + 12) = 0
=> b2 - 4b - 3b + 12 = 0
=> b(b - 4) - 3(b - 4) = 0
=> (b - 3)(b - 4) = 0
=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)
Khi b = 3 => a = 4
Khi b = 4 => a = 3
+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1
+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1
c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)
= (a - b)(a2 - 2ab + b2) + 3ab(a - b)
= (a - b)3 + 3ab(a - b)
= 27 + 9ab
Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)
Khi đó C = 27 + 9.6.3 = 27 + 162 = 189
a) x2 - 2x + 1 = 16 ( như này chứ nhỉ ? )
<=> x2 - 2x + 1 - 16 = 0
<=> x2 - 2x - 15 = 0
<=> x2 + 3x - 5x - 15 = 0
<=> x( x + 3 ) - 5( x + 3 ) = 0
<=> ( x + 3 )( x - 5 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=5\end{cases}}\)
b) ( 5x + 1 )2 - ( 5x - 3 )( 5x + 3 ) = 30
<=> 25x2 + 10x + 1 - ( 25x2 - 9 ) = 30
<=> 25x2 + 10x + 1 - 25x2 + 9 = 30
<=> 10x + 10 = 30
<=> 10x = 20
<=> x = 2
c) ( x - 1 )( x2 + x + 1 ) - x( x + 2 )( x - 2 ) = 5 ( đã sửa đề )
<=> x3 - 1 - x( x2 - 4 ) = 5
<=> x3 - 1 - x3 + 4x = 5
<=> 4x - 1 = 5
<=> 4x = 6
<=> x = 6/4 = 3/2
M = ( x + 4 )( x - 4 ) - 2x( 3 + x ) + ( x + 3 )2
= x2 - 16 - 6x - 2x2 + x2 + 6x + 9
= -7 ( đpcm )
N = ( x2 + 4 )( x + 2 )( x - 2 ) - ( x2 + 3 )( x2 - 3 )
= ( x2 + 4 )( x2 - 4 ) - ( x4 - 9 )
= x4 - 16 - x4 + 9
= -7 ( đpcm )
P = ( 3x - 2 )( 9x2 + 6x + 4 ) - 3( 9x3 - 2 )
= 27x3 - 8 - 27x3 + 6
= -2 ( đpcm )
Q = ( 3x + 2 )2 + ( 6x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 12x + 4 + 12x - 18x2 + 20 - 30x + 4 - 12x + 9x2
= -18x + 28 ( có phụ thuộc vào biến )
1) -25x6 - y8 + 10x3y4 = -( 25x6 - 10x3y4 + y8 ) = -[ ( 5x3 )2 - 2.5x3.y4 + ( y4 ) ] = -( 5x3 - y4 )2
2) 2x( 3x - 5 ) + 10 - 6x = 2x( 3x - 5 ) - 2( 3x - 5 ) = ( 3x - 5 )( 2x - 2 ) = 2( 3x - 5 )( x - 1 )
3) x2 - 9 - x2( x2 - 9 ) = ( x2 - 9 ) - x2( x2 - 9 ) = ( x2 - 9 )( 1 - x2 ) = ( x - 3 )( x + 3 )( 1 - x )( 1 + x )
4) 4x2 - 9 - ( 3x + 1 )( 2x - 3 ) = ( 2x - 3 )( 2x + 3 ) - ( 3x + 1 )( 2x - 3 )
= ( 2x - 3 )[ ( 2x + 3 ) - ( 3x + 1 ) ]
= ( 2x - 3 )( 2x + 3 - 3x - 1 )
= ( 2x - 3 )( 2 - x )
5) 8x3 - y3 - 4x + 2y = ( 8x3 - y3 ) - ( 4x - 2y )
= [ ( 2x )3 - y3 ) - 2( 2x - y )
= ( 2x - y )( 4x2 + 2xy + y2 ) - 2( 2x - y )
= ( 2x - y )( 4x2 + 2xy + y2 - 2 )
\(4x^2-4\)
\(=4\left(x^2-1\right)\)
\(=4\left(x-1\right)\left(x+1\right)\)
\(x^2-3x+5\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy \(x=3\)hoặc \(x=-5\)
\(x^2-3x+5\left(x-3\right)=0\)
\(x^2-3x+5x-15=0\)
\(x^2+2x-15=0\)
\(x^2-3x+5x-15=0\)
\(x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x+5\right)\left(x-3\right)=0\)
\(\orbr{\begin{cases}x+5=0\\x-3=0\end{cases}}\)
\(\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)
a) x(y - x)3 + y(x - y)2 + xy(x - y)
= x(y - x).(y - x)2 + y(x - y)2 + xy(x - y)
= x(y - x)(x - y)2 + y(x - y)2 + xy(x - y)
= (x - y)[x(y - x)(x - y) + y(x - y) + xy]
= (x - y)[x(y - x)(x - y) + y(x - y) + xy]
b) 3a2x - 3a2y + abx - aby
= 3a2(x - y) + ab(x - y)
= a(x - y)(3a + b)
a) x( y - x )3 - y( x - y )2 + xy( x - y )
= -x( x - y )3 - y( x - y )2 + xy( x - y )
= ( x - y )[ -x( x - y )2 - y( x - y ) + xy ]
= ( x - y )[ -x( x2 - 2xy + y2 ) - yx + y2 + xy ]
= ( x - y )( -x3 + 2x2y - xy2 - yx + y2 + xy )
= ( x - y )( -x3 + 2x2y - xy2 + y2 )
b) 3a2x - 3a2y + abx - aby
= 3a2( x - y ) + ab( x - y )
= ( x - y )( 3a2 + ab )
= ( x - y )a( 3a + b )