Tìm x bt
a. \(x\left(x-2\right)+x-2=0\)
b.\(3x^2-6x=0\)
c. \(\left(5x-4\right)^2-49x^2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) x2 + x2y - y - 1
= x2( 1 + y ) - ( 1 + y )
= ( 1 + y )( x2 - 1 )
= ( 1 + y )( x - 1 )( x + 1 )
2) x2 + y2 - 2xy - 25
= ( x2 - 2xy + y2 ) - 25
= ( x - y )2 - 52
= ( x - y - 5 )( x - y + 5 )
3) ( 2x - 1 )( x2 + 2x - 1 ) - ( 1 - 2x )( x - 3 )
= ( 2x - 1 )( x2 + 2x - 1 ) + ( 2x - 1 )( x - 3 )
= ( 2x - 1 )( x2 + 2x - 1 + x - 3 )
= ( 2x - 1 )( x2 + 3x - 4 )
= ( 2x - 1 )( x2 - x + 4x - 4 )
= ( 2x - 1 )[ x( x - 1 ) + 4( x - 1 ) ]
= ( 2x - 1 )( x - 1 )( x + 4 )
4) a2 + x2 - 16 + 2ax
= ( a2 + 2ax + x2 ) - 16
= ( a + x )2 - 42
= ( a + x - 4 )( a + x + 4 )
(x2-1)(x2+x+1)(x2-x+1)
=(x2-1)[(x2+1)2-x2]
=(x2-1)[x4+2x2+1-x2]
=(x2-1)(x4+x2+1)
=(x2)3-1
=x6-1
( x2 - 1 )( x2 + x + 1 )( x2 - x + 1 )
= ( x2 - 1 )[ ( x2 + 1 ) + x ][ ( x2 + 1 ) - x ]
= ( x2 - 1 )[ ( x2 + 1 )2 - x2 ]
= ( x2 - 1 )( x4 + 2x2 + 1 - x2 )
= ( x2 - 1 )( x4 + x2 + 1 )
= x6 + x4 + x2 - x4 - x2 - 1
= x6 - 1
a) 4a2b3 - 6a3b2 = 2a2b2( 2b - 3a )
b) ( a - b )2 - ( b - a ) = ( a - b )2 + ( a - b ) = ( a - b )( a - b + 1 )
c) ( 8a3 - 27b3 ) - 2a( 4a2 - 9b2 ) = 8a3 - 27b3 - 8a3 + 18ab2 = 18ab2 - 27b3 = 9b2( 2a - 3b )
d) 10x2 + 10xy + 5x + 5y = 10x( x + y ) + 5( x + y ) = ( x + y )( 10x + 5 ) = 5( x + y )( 2x + 1 )
e) 5ay - 3bx + ax - 15by = 5y( a - 3b ) + x( a - 3b ) = ( a - 3b )( 5y + x )
a) \(4a^2.b^3-6a^3.b^2=2a^2.b^2\left(2b-3a\right)\)
b) \(\left(a-b\right)^2-\left(b-a\right)=\left(a-b\right)^2+\left(a-b\right)\)
\(=\left(a-b\right).\left(a-b+1\right)\)
c) \(8a^3-27b^3-2a.\left(4a^2-9b^2\right)=8a^3-27b^3-8a^3+18ab^2\)
\(=-27b^3+18ab^2=18ab^2-27b^3=9b^2.\left(2a-3b\right)\)
d) \(10x^2+10xy+5x+5y=5.\left(2x^2+2xy+x+y\right)\)
\(=5.\left[\left(2x^2+2xy\right)+\left(x+y\right)\right]=5.\left[2x\left(x+y\right)+\left(x+y\right)\right]\)
\(=5\left(x+y\right)\left(2y+1\right)\)
e) \(5ay-3bx+ax-15by=\left(5ay-15by\right)-\left(3bx-ax\right)\)
\(=5y\left(a-3b\right)-x\left(3b-a\right)=5y\left(a-3b\right)+x\left(a-3b\right)\)
\(=\left(a-3b\right)\left(x+5y\right)\)
trong olm để hỏi các môn liên quan tới học chứ không nên chia sẽ lập trình
a) x( x - 2 ) + x - 2 = 0
<=> x( x - 2 ) + ( x - 2 ) = 0
<=> ( x - 2 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) 3x2 - 6x = 0
<=> 3x( x - 2 ) = 0
<=> \(\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
c) ( 5x - 4 )2 - 49x2 = 0
<=> ( 5x - 4 )2 - ( 7x )2 = 0
<=> ( 5x - 4 - 7x )( 5x - 4 + 7x ) = 0
<=> ( -2x - 4 )( 12x - 4 ) = 0
<=> \(\orbr{\begin{cases}-2x-4=0\\12x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}\)
a.
\(x\left(x-2\right)+x-2=0\)
\(x\left(x-2\right)+1\left(x-2\right)=0\)
\(\left(x-2\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)
\(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b.
\(3x^2-6x=0\)
\(3x\left(x-2\right)=0\)
\(\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
c.
\(\left(5x-4\right)^2-49x^2=0\)
\(\left(5x-4\right)^2-\left(7x\right)^2=0\)
\(\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\left(-2x-4\right)\left(12x-4=0\right)\)
\(\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}\)