K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2020

Đặt S = a + b 

P = a * b 

\(a^2+b^2=20\) 

\(a^2+2ab+b^2-2ab=20\) 

\(\left(a+b\right)^2-2ab=20\) 

\(6^2-2P=20\) 

\(36-2P=20\) 

\(2P=36-20\) 

\(2P=16\) 

\(P=8\) 

\(a^3+b^3\) 

\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\) 

\(=\left(a+b\right)^3-3ab\left(a+b\right)\) 

\(=S^3-3PS\) 

\(=6^3-3\cdot8\cdot6\) 

\(=216-144\) 

\(=72\)                

27 tháng 9 2020

Ta có 5 + 6 + 7 + ....  + n+ 1 = 105n + 95 (n > 0)

=> [(n + 1 - 5) : 1 + 1].(n + 1 + 5) : 2 = 105n + 95

=> (n - 3)(n + 6) = 210n + 190

=> n2 + 3n - 18 = 210n + 190

=> n2 + 3n - 18 - 210n - 190 = 0

=> n2 - 207n - 208 = 0

=> n2 - 208n + n - 208 = 0

=> n(n - 208) + (n - 208) = 0

=> (n + 1)(n - 208) = 0

=> \(\orbr{\begin{cases}n+1=0\\n-208=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=-1\left(\text{loại}\right)\\n=208\left(\text{tm}\right)\end{cases}}\)

Vậy n = 208

26 tháng 9 2020

Do \(a,b,c>0\)suy ra \(\hept{\begin{cases}a+b< a+b+c\\b+c< a+b+c\\c+a< a+b+c\end{cases}< =>\hept{\begin{cases}\frac{1}{a+b+c}< \frac{1}{a+b}\\\frac{1}{a+b+c}< \frac{1}{b+c}\\\frac{1}{a+b+c}< \frac{1}{c+a}\end{cases}}}\)

Nên \(\frac{a}{a+b+c}< \frac{a}{a+b};\frac{b}{a+b+c}< \frac{b}{b+c};\frac{c}{a+b+c}< \frac{c}{c+a}\)

Cộng theo vế 3 bất đẳng thức trên : \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(< =>\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< =>1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)(*)

Ta có : \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng theo vế 3 bất đẳng thức trên : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}\)

\(< =>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}< =>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(**)

Từ (*) và (**) ta được : \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)Hay ta có điều phải chứng minh

26 tháng 9 2020

Bài của bạn @phuonglenhat123 đúng rồi, tuy nhiên cách trình bày khá dài. Mình sẽ rút ngắn lại. Cách xét vẫn vậy nhé

Do a,b,c>0 nên \(\frac{a}{a+b}< 1\)vì vậy \(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)

Tương tự ta có \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng vế với vế các bất đẳng thức trên ta có \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)

hay \(1=\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\)

vậy bất đẳng thức được chứng minh

26 tháng 9 2020

Áp dụng BĐT Cô si, ta có :

\(a^4+b^4\ge2a^2b^2\)

\(b^4+c^4\ge2b^2c^2\)

\(c^4+a^4\ge2c^2a^2\)

\(\Rightarrow a^4+b^4+b^4+c^4+c^4+a^4\ge2a^2b^2+2b^2c^2+2c^2a^2\)

\(\Rightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)( 1 )

Ta lại có :

\(a^2b^2+b^2c^2\ge2ab^2c\)

\(b^2c^2+c^2a^2\ge2bc^2a\)

\(c^2a^2+a^2b^2\ge2ca^2b\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge ab^2c+bc^2a+ca^2b=abc\left(a+b+c\right)\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\forall a;b;c\)( Đpcm )

26 tháng 9 2020

Ta có \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\forall a;b;c>0\)

\(\Leftrightarrow a^4+b^4+c^4-a^2bc-b^2ac-c^2ab\ge0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2bc-2b^2ac-2c^2ab\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+2a^2b^2+\left(b^2-c^2\right)^2+2b^2c^2+\left(c^2-a^2\right)^2-2a^2c^2-2b^2ac-2c^2ab\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2-\left(c^2-a^2\right)^2+\left(a^2b^2+b^2c^2-2b^2ac\right)\)\(+\left(b^2c^2+c^2a^2-2c^2ab\right)+\left(a^2b^2+c^2a^2-2a^2bc\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(ab-bc\right)^2+\left(bc-ca\right)^2+\left(ab-ac\right)^2\ge0\)

Luôn đúng với mọi a,b,c