cho a +b+c = 0. Chứng minh a4 + b4 +c4 bằng mỗi biểu thức sau:
a) 2.(ab +bc+ ca)2
b) \(\dfrac{\left(a^2+b^{2^{ }}+c^2\right)^2}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (148)2020 + 10
A = (148)5.404 + 10
A = (145)8.404 + 10
A = 5378243232 + 10
537824 \(\equiv\) 1 (mod 11)
5378243232 \(\equiv\) 13232 (mod 11) \(\equiv\) 1 (mod 11)
10 \(\equiv\) 10 (mod 11)
⇒ 5378243232 + 10 \(\equiv\) 1 + 10 (mod 11)
⇒5378243232 + 10 \(\equiv\) 11 (mod 11) \(\equiv\) 0 (mod 11)
⇒ A = (148)2020 + 10 \(⋮\) 11 (đpcm)
\(14\equiv3\left(mod11\right)\Rightarrow\left(14^8\right)^{2020}\equiv\left(3^8\right)^{2020}\left(mod11\right)\)
\(\left(3^8\right)^{2020}=3^{8.404.5}=\left(3^5\right)^{3232}=\left(243\right)^{3232}\)
\(243\equiv1\left(mod11\right)\Rightarrow243^{3232}\equiv1\left(mod11\right)\)
\(\Rightarrow\left(14^8\right)^{2020}\equiv1\left(mod11\right)\)
\(\Rightarrow\left(14^8\right)^{2020}+10⋮11\)
g) (3x + 4)(3x - 4) - (2x + 5)² = (x - 5)² + (2x + 1)² - (x² - 2x) + (x - 1)²
9x² - 16 - 4x² - 20x - 25 = x² - 10x + 25 + 4x² + 4x + 1 - x² + 2x + x² - 2x + 1
5x² - 20x - 41 = 5x² - 6x + 27
5x² - 5x² - 20x + 6x = 27 + 41
-14x = 68
i) -5(x + 3)² + (x - 1)(x + 1) + (2x - 3)² = (5x - 2)² - 5x(5x + 3)
-5(x² + 6x + 9) + x² - 1 + 4x² - 12x + 9 = 25x² - 20x + 4 - 25x² - 15x
-5x² - 30x - 45 + x² - 1 + 4x² - 12x + 9 = -35x + 4
-42x - 37 = -35x + 4
-42x + 35x = 4 + 37
-7x = 41
a) (-x + 5)(x - 2) + (x - 7)(x + 7) = (3x + 1)² - (3x - 2)(3x + 2)
-x² + 2x + 5x - 10 + x² - 49 = 9x² + 6x + 1 - 9x² + 4
7x - 59 = 6x + 5
7x - 6x = 5 + 59
x = 64
b) (5x - 1)(x + 1) - 2(x - 3)² = (x + 2)(3x - 1) - (x + 4)² + (x² - x)
5x² + 5x - x - 1 - 2(x² - 6x + 9) = 3x² - x + 6x - 2 - x² - 8x - 16 + x² - x
5x² + 4x - 1 - 2x² + 12x - 18 = 3x² - 4x - 18
3x² + 16x - 19 = 3x² - 4x - 18
3x² + 16x - 3x² + 4x = -18 + 19
20x = 1
a.
\(\left(x+2y\right)^2-\left(x-2y\right)^2=\left(x+2y+x-2y\right)\left(x+2y-x+2y\right)=2x.4y=8xy\)
b.
\(\left(3x+2y\right)^2-\left(3x+2y\right)\left(6y-4x\right)+\left(2x-3y\right)^2\)
\(=\left(2x+3y\right)^2+2\left(2x+3y\right)\left(2x-3y\right)+\left(2x-3y\right)^2\)
\(=\left(2x+3y+2x-3y\right)^2\)
\(=\left(4x\right)^2=16x^2\)
\(A=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\)
Do \(\left(x-3\right)^2\ge0;\forall x\Rightarrow-\left(x-3\right)^2\le0;\forall x\)
\(\Rightarrow A\le0\Rightarrow A_{max}=0\) khi \(x=3\)
\(B=4x^2-4x+1+14=\left(2x-1\right)^2+14\)
Do \(\left(2x-1\right)^2\ge0;\forall x\Rightarrow\left(2x-1\right)^2+14\ge14;\forall x\)
\(\Rightarrow B_{min}=14\) khi \(2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(\left(x^2+4y^2-4xy\right):\left(x-2y\right)=\left(x-2y\right)^2:\left(x-2y\right)=x-2y\)
Chắc em ghi nhầm đề, hoặc là số giữa là \(2\left(2+3x\right)\left(1-2y\right)\), hoặc là số cuối là \(\left(2x-1\right)^2\)
a.
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
b.
Từ câu a:
\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow a^4+b^4+c^4=\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\)