Tính C = 1 -x -x^2/3-x^3/27 tại x =-27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^3+2x-3\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+3\right)\)
2) \(x^3-6x+4\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x-2\right)\)
3) \(x^3-2x^2+1\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)-\left(x-1\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x-1\right)\)
4) \(x^3+5x^2-12\)
\(=\left(x^3+2x^2\right)+\left(3x^2+6x\right)-\left(6x+12\right)\)
\(=x^2\left(x+2\right)+3x\left(x+2\right)-6\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+3x-6\right)\)
Ta có:
\(-25x^6-y^8+10x^3y^4\)
\(=-\left[\left(5x^3\right)^2-10x^3y^4+\left(y^4\right)^2\right]\)
\(=-\left(5x^3-y^4\right)^2\)
a. Gọi thời gian đoạn xuống dốc là t (h), thời gian đoạn lên dốc là \(\frac{4}{3}.t\left(h\right)\)
Quãng đường các đoạn xuống dốc và lên dốc lần lượt là:
\(s_1=50t\) (km)
\(s_2=30.\frac{4t}{3}=40t\) (km)
Ta có:
\(\frac{s_1}{s_2}=\frac{5}{4}\)
\(\Rightarrow s_1=\frac{5s_2}{4}\)
Vậy đoạn xuống dốc dài hơn đoạn lên dốc và bằng 5454 đoạn lên dốc. .
lỡ bấm Gửi trả lời , câu b này :
b,Vận tốc trung bình trên cả quãng đường là :
\(v_{tb}=\frac{s}{t}=\frac{s_1+s_2}{t+\frac{5t}{4}}=\frac{50t+40t}{\frac{9t}{4}}=\frac{90t.4}{9t}=40\left(km/h\right)\)
học tốt
a) (2x - 3)2 = (x + 5)2
=> 4x2 - 12x + 9 = x2 + 10x + 25
=> 4x2 - 12x + 9 - (x2 + 10x + 25) = 0
=> 3x2 - 22x - 16 = 0
=> 3x2 - 24x + 2x - 16 = 0
=> 3x(x - 8) + 2(x - 8) = 0
=> (3x + 2)(x - 8) = 0
=> \(\orbr{\begin{cases}3x+2=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=8\end{cases}}\)
b) x2(x - 1) - 4x2 + 8x - 4 = 0
=> x2(x - 1) - (2x - 2)2 = 0
=> x2(x - 1) - [2(x- 1)]2 = 0
=> x2(x - 1) - 4(x - 1)2 = 0
=> (x - 1)(x2 - 4(x - 1) = 0
=> (x - 1)(x2 - 4x + 4) = 0
=> (x - 1)(x - 2)2 = 0
=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
c) x2 + 7x + 12 = 0
=> x2 + 3x + 4x + 12 = 0
=> x(x + 3) + 4(x + 3) = 0
=> (x + 4)(x + 3) = 0
=> \(\orbr{\begin{cases}x+4=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-3\end{cases}}\)
d) x2 + 3x - 18 = 0
=> x2 + 6x - 3x - 18 = 0
=> x(x + 6) - 3(x + 6) = 0
=> (x - 3)(x + 6) = 0
=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
e) x(x + 6) - 7x - 42 = 0
=> x(x + 6) - 7(x + 6) = 0
=> (x - 7)(x + 6) = 0
=> \(\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)
1. ( 2x - 3 )2 = ( x + 5 )2
<=> ( 2x - 3 )2 - ( x + 5 )2 = 0
<=> [ ( 2x - 3 ) - ( x + 5 ) ][ ( 2x - 3 ) + ( x + 5 ) ] = 0
<=> ( 2x - 3 - x - 5 )( 2x - 3 + x + 5 ) = 0
<=> ( x - 8 )( 3x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)
2. x2( x - 1 ) - 4x2 + 8x - 4 = 0
<=> x2( x - 1 ) - ( 4x2 - 8x + 4 ) = 0
<=> x2( x - 1 ) - 4( x2 - 2x + 1 ) = 0
<=> x2( x - 1 ) - 4( x - 1 )2 = 0
<=> ( x - 1 )[ x2 - 4( x - 1 ) ] = 0
<=> ( x - 1 )( x2 - 4x + 4 ) = 0
<=> ( x - 1 )( x - 2 )2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
3. x2 + 7x + 12 = 0
<=> x2 + 3x + 4x + 12 = 0
<=> x( x + 3 ) + 4( x + 3 ) = 0
<=> ( x + 3 )( x + 4 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)
4. x2 + 3x - 18 = 0
<=> x2 - 3x + 6x - 18 = 0
<=> x( x - 3 ) + 6( x - 3 ) = 0
<=> ( x - 3 )( x + 6 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
5. x( x + 6 ) - 7x - 42 = 0
<=> x( x + 6 ) - 7( x + 6 ) = 0
<=> ( x + 6 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}\)
1. x2 - 16 - 4xy + 4y2
= ( x2 - 4xy + 4y2 ) - 16
= ( x - 2y )2 - 42
= ( x - 2y - 4 )( x - 2y + 4 )
2. 4x2 + 4x - 3
= ( 4x2 + 4x + 1 ) - 4
= ( 2x + 1 )2 - 2
= ( 2x + 1 - 2 )( 2x + 1 + 2 )
= ( 2x - 1 )( 2x + 3 )
3. x2 - x - 12
= x2 + 3x - 4x - 12
= x( x + 3 ) - 4( x + 3 )
= ( x + 3 )( x - 4 )
4. 3x + 3y - x2 - 2xy - y2
= ( 3x + 3y ) - ( x2 + 2xy + y2 )
= 3( x + y ) - ( x + y )2
= ( x + y )( 3 - x - y )
5. 4y4 + 16
= 4( y4 + 4 )
= 4( y4 + 4y2 + 4 - 4y2 )
= 4[ ( y4 + 4y2 + 4 ) - 4y2 ]
= 4[ ( y2 + 2 )2 - ( 2y )2 ]
= 4( y2 - 2y + 2 )( y2 + 2y + 2 )
a,\(x^2-16-4xy+4y^2\)
\(=\left(x^2-4xy+4y^2\right)-16\)
\(=\left(x-2y\right)^2-4^2\)
\(=\left(x-2y-4\right)\left(x-2y+4\right)\)
b,\(4x^2+4x-3\)
\(=4x^2-2x+6x-3\)
\(=\left(4x^2-2x\right)+\left(6x-3\right)\)
\(=2x\left(2x-1\right)+3\left(2x-1\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
c,\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2+3x\right)-\left(4x-12\right)\)
\(=x\left(x+3\right)-4\left(x+3\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
2x - 2x2 - 5
= -2( x2 - x + 1/4 ) - 9/2
= -2( x - 1/2 )2 - 9/2 ≤ -9/2 ∀ x
Dấu "=" xảy ra <=> x = 1/2
Vậy GTLN của biểu thức = -9/2 <=> x = 1/2
Ta có:
\(x-x^2\)
\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
Vậy Max = 1/4 khi x = 1/2
Ta có: \(4x-x^2+3\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\le7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy Max = 7 khi x = 2
4x - x2 + 3
= -( x2 - 4x + 4 ) + 7
= -( x - 2 )2 + 7 ≤ 7 ∀ x
Dấu = xảy ra <=> x = 2
Vậy GTLN của đa thức = 7 <=> x = 2
Ta có:
\(M=x^2+y^2-x+6y+10\)
\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
M = x2 + y2 - x + 6y + 10
= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4
= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x
Dấu "=" xảy ra <=> x = 1/2 ; y = -3
=> MinM = 3/4 <=> x = 1/2 ; y = -3
Ta có:
\(C=1-x-\frac{x^2}{3}-\frac{x^3}{27}\)
\(C=1-\left(-27\right)-\frac{\left(-27\right)^2}{3}-\frac{\left(-27\right)^3}{27}\) tại x = -27
\(C=1+27-\frac{3^6}{3}+27^2\)
\(C=1+27-243+729\)
\(C=514\)