K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

Xét hiệu:

\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)

\(=a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\)

\(=\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\)

\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\)

Do \(\left(\frac{a}{2}-b\right)^2\ge0\forall a,b;\left(\frac{a}{2}-c\right)^2\ge0\forall a,c\);\(\left(\frac{a}{2}-d\right)^2\ge0\forall a,d;\left(\frac{a}{2}-e\right)^2\ge0\forall a,e\)Do đó:

\(\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

Dấu"="xảy ra khi \(b=c=d=e=\frac{a}{2}\)

6 tháng 10 2020

ô kê :))

a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )

<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae

Nhân 4 vào từng vế ta được

<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae

<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0

<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ad + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0

<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )

Vậy bđt được chứng minh

Dấu "=" xảy ra <=> b = c = d = e = a/2

6 tháng 10 2020

Vi a + b + c = 1 nên bt tương đương với \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

Ta có : \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)( 1 ) 

Mặt khác :\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\le\left(\frac{\left(a+b+c\right)^2}{3}\right)^3=\frac{1}{27}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{1}{3}.\frac{1}{27}=\frac{1}{81}\)

Dấu "=" xảy ra <=> a = b = c = 1/3

Vậy maxP = 1/81 <=> a = b = c = 1/3

6 tháng 10 2020

tam giác abc cân tại a 

6 tháng 10 2020

? câu hỏi là j thế bạn 

6 tháng 10 2020

Từ giả thiết suy ra: \(a\left(b-c\right)=c\left(a-b\right)\left(1\right)\)

Ta có: \(\frac{1}{c}+\frac{1}{a-b}=\frac{a-b+c}{c\left(a-b\right)}\left(2\right)\)

\(\frac{1}{b-c}-\frac{1}{a}=\frac{a-b+c}{a\left(b-c\right)}\left(3\right)\)

Từ 1,2,3 => đpcm

6 tháng 10 2020

ĐK : x ∈ Q

Đặt x2 + x + 6 = k2 ( k ∈ N )

=> 4( x2 + x + 6 ) = 4k2

=> 4x2 + 4x + 24 = 4k2

=> ( 4x2 + 4x + 1 ) + 23 = 4k2

=> ( 2x + 1 )2 + 23 = 4k2

=> 4k2 - ( 2x + 1 )2 - 23 = 0

=> ( 2k )2 - ( 2x + 1 )2 = 23

=> ( 2k - 2x - 1 )( 2k + 2x + 1 ) = 23

Xét các trường hợp : 

1. \(\hept{\begin{cases}2k-2x-1=1\\2k+2x+1=23\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=6\end{cases}}\)( tm )

2. \(\hept{\begin{cases}2k-2x-1=-1\\2k+2x+1=-23\end{cases}}\Leftrightarrow x=k=-6\)( tm )

3. \(\hept{\begin{cases}2k-2x-1=23\\2k+2x+1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\k=6\end{cases}}\)( tm )

4. \(\hept{\begin{cases}2k-2x-1=-23\\2k+2x+1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=-6\end{cases}}\)( tm )

=> x ∈ { 5 ; -6 } thì x2 + x + 6 là một số chính phương

6 tháng 10 2020

mình nhầm ĐK của k ; k ∈ Z nhé :v 

6 tháng 10 2020

Ta có: \(\left(\sqrt{14}+\sqrt{10}\right)\sqrt{6-\sqrt{35}}-2\)

\(=\sqrt{2}\cdot\left(\sqrt{7}+\sqrt{5}\right)\sqrt{6-\sqrt{35}}-2\)

\(=\left(\sqrt{7}+\sqrt{5}\right)\sqrt{12-2\sqrt{35}}-2\)

\(=\left(\sqrt{7}+\sqrt{5}\right)\sqrt{7-2\sqrt{35}+5}-2\)

\(=\left(\sqrt{7}+\sqrt{5}\right)\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}-2\)

\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)-2\)

\(=7-5-2\)

\(=0\)