CM 4 phân giác trong của 1 hình bình hành lần lượt chứa bốn cạnh của một hình chữ nhật có độ dài đường chéo đúng bằng chênh lệch độ dài giữa 2 cạnh liên tiếp của hình bình hành ban đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5x2 - 5xy + 7y - 7x = ( 5x2 - 5xy ) - ( 7x - 7y ) = 5x( x - y ) - 7( x - y ) = ( x - y )( 5x - 7 )
b) x2 - y2 + 2x + 1 = ( x2 + 2x + 1 ) - y2 = ( x + 1 )2 - y2 = ( x - y + 1 )( x + y + 1 )
c) 3x2 + 6xy + 3y2 - 3z2 = 3( x2 + 2xy + y2 - z2 ) = 3[ ( x2 + 2xy + y2 ) - z2 ] = 3[ ( x + y )2 - z2 ] = 3( x + y - z )( x + y + z )
d) ab( x2 + y2 ) + xy( a2 + b2 ) = abx2 + aby2 + a2xy + b2xy
= ( a2xy + abx2 ) + ( aby2 + b2xy )
= ax( ay + bx ) + by( ay + bx )
= ( ay + bx )( ax + by )
a) 16x2 - ( x2 + 4 )2
= ( 4x )2 - ( x2 + 4 )2
= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]
= ( -x2 + 4x - 4 )( x2 + 4x + 4 )
= [ -( x2 - 4x + 4 ) ]( x + 2 )2
= [ -( x - 2 )2 ]( x + 2 )2
b) ( x + y )3 + ( x - y )3
= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]
= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]
= 2x( 2x2 + 2y2 - x2 + y2
= 2x( x2 + 3y2 )
16 = 4 ‧ 4 = 8 ‧ 2
Mà 4 - 4 = 0 , 8 - 2 = 6
x = 8 , y = 2
\(x^3-y^3=8^3-2^3=512-8=504\)
\(\Rightarrow x^3-y^3=504\)
x - y = 6
=> ( x - y )2 = 36
=> x2 - 2xy + y2 = 36
=> x2 + y2 - 32 = 36
=> x2 + y2 = 68
Ta có x3 - y3 = ( x - y )( x2 + xy + y2 )
= 6.( 68 + 16 )
= 6.84 = 504
a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)
b) Ta có y - y2 - 1
= -(y2 - y + 1)
= -(y2 - y + 1/4) - 3/4
= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)
a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
\(x^2+3x-10\)
\(=x^2+5x-2x-10\)
\(=\left(x^2+5x\right)-\left(2x+10\right)\)
\(=x\left(x+5\right)-2\left(x+5\right)\)
\(=\left(x-2\right)\left(x+5\right)\)
Thích hđt thì chiều :))
x2 + 3x - 10
= ( x2 + 3x + 9/4 ) - 49/4
= ( x + 3/2 )2 - ( 7/2 )2
= ( x + 3/2 - 7/2 )( x + 3/2 + 7/2 )
= ( x - 2 )( x + 5 )
1) x - 2 = ( x - 2 )2
<=> ( x - 2 ) - ( x - 2 )2 = 0
<=> ( x - 2 )[ 1 - ( x - 2 ) ] = 0
<=> ( x - 2 )( 1 - x + 2 ) = 0
<=> ( x - 2 )( 3 - x ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
2) ( x2 + 1 )( 2x - 1 ) + 2x = 1
<=> ( x2 + 1 )( 2x - 1 ) + ( 2x - 1 ) = 0
<=> ( 2x - 1 )[ ( x2 + 1 ) + 1 ] = 0
<=> ( 2x - 1 )( x2 + 1 + 1 ) = 0
<=> ( 2x - 1 )( x2 + 2 ) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\x^2+2=0\end{cases}}\Leftrightarrow x=\frac{1}{2}\)( do x2 + 2 ≥ 2 > 0 ∀ x )
À HÁ