K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

giúp mình với

6 tháng 10 2020

xy+yz-2*(x+2)

6 tháng 10 2020

Câu c đổi lại thành trên tia đối tia NM ạ

6 tháng 10 2020

Làm chắc câu d mà Tam giác ABC cần có thêm đk gì để tứ giác AECM là  hình thoi là đc nha

6 tháng 10 2020

a) Vì H' đối xứng với H qua BC nên BC là đường trung trực của HH' => BH = BH', CH = CH'

Xét ∆BHC và ∆BH'C có:

      BH = BH' (cmt)

      BC: cạnh chung

      HC = H'C (cmt)

Do đó ∆BHC = ∆BH'C (c.c.c)

b) Gọi T là giao điểm của HH' với BC

∆HH'K có T là trung điểm của HH' (gt) và HI = IK (gt) nên TI là đường trung bình của tam giác => HI // H'K hay BC // H'K

Dễ chứng minh: ∆HIB = ∆KIC (c.g.c) => ^HBI = ^KCI (hai góc tương ứng)

Mà ^HBI = ^H'BC (∆BHC = ∆BH'C) nên ^H'BC = ^KCI

Hình thang BH'KC có ^H'BC = ^KCI nên là hình thang cân (đpcm)

6 tháng 10 2020

Ta có: \(10a^2-3b^2+ab=0\Leftrightarrow10a^2+6ab-5ab-3b^2=0\)\(\Leftrightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\Leftrightarrow\left(2a-b\right)\left(5a+3b\right)=0\Leftrightarrow\orbr{\begin{cases}2a-b=0\\5a+3b=0\end{cases}}\)

\(\Leftrightarrow2a=b\)hoặc \(5a=-3b\)( không thoả mãn do b>a>0)

Tthay b=2a vào M ta có: \(M=\frac{2a-2a}{3a-2a}+\frac{5.2a-a}{3a+2a}=\frac{0}{a}+\frac{9a}{5a}=0+\frac{9}{5}=\frac{9}{5}\)

6 tháng 10 2020

b) Ta có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-c^3=0\)

\(\Leftrightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

=> đpcm

6 tháng 10 2020

a) \(a^3+b^3-c^3+3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)

\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b-c\right)\)

\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ca+bc+c^2-3ab\right)\)

\(=\left(a+b-c\right)\left(a^2+b^2+c^2-ab+bc+ca\right)\)

b) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+\left(x+y+z\right)x+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)

\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)+x^2+xy+zx+x^2-y^2+yz-z^2\right]\)

\(=\left(y+z\right)\left(3x^2+3xy+3yz+3zx\right)\)

\(=3\left(y+z\right)\left[x\left(x+y\right)++z\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

6 tháng 10 2020

\(a)a^3+b^3-c^3+3abc=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)

\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b-c\right)\)

\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc+ac\right)\)