\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}}{2014+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét \(\Delta AMN\) có: góc ngoài của \(\Delta AMN\)tại góc M là 1100
\(\Rightarrow\widehat{AMN}=180^0-110^0=70^0\)
Có \(\widehat{AMN}=\widehat{MBC}\left(=70^0\right)\)mà chúng ở vị trí so le trong
\(\Rightarrow MN//BC\)
b,xét \(\Delta ABC\)có:
\(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{BAC}=180^0-\left(70^0+65^0\right)\)
\(\Rightarrow\widehat{BAC}=45^0\)
Có \(M\in AB,N\in AC\)
\(\Rightarrow\widehat{BAC}=\widehat{MAN}=45^0\)
\(A=\frac{7}{10.11}+\frac{7}{11.12}+..+\frac{7}{69.70}=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+..+\frac{1}{69}-\frac{1}{70}\right)=7\left(\frac{1}{10}-\frac{1}{70}\right)=\frac{3}{5}\)
\(B=\frac{5^{^2}}{1.6}+\frac{5^{^2}}{6.11}+..+\frac{5^{^2}}{26.31}=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+..+\frac{1}{26}-\frac{1}{31}\right)=5\left(1-\frac{1}{31}\right)=\frac{150}{31}\)
\(C=2+2^2+2^3+..+2^{50}\Rightarrow2C=2^2+2^3+..+2^{50}+2^{51}=2^{51}-1+C\)
Vậy \(C=2^{51}-1\)
\(D=1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{11}}\Rightarrow2D=2+1+\frac{1}{2}+..+\frac{1}{2^{10}}=2+D-\frac{1}{2^{11}}\)
Vậy \(D=2-\frac{1}{2^{11}}\)
\(\text{Ta có :}P=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{2014+\frac{2013}{2}+...+\frac{1}{2014}}\)
\(\Rightarrow P=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{A}\)với \(A=2014+\frac{2013}{2}+...+\frac{1}{2014}\)
\(\Rightarrow A=1+\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)
\(\Rightarrow A=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)
\(\Rightarrow A=2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)\)
\(\text{Khi đó : }P=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{A}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}}{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)}\)
\(\Rightarrow P=\frac{1}{2015}\)