K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

ae giải giúp mình

15 tháng 10 2020

( 2x - 5y )( 4x2 + 10xy + 25y2 )

=( 2x )3 - ( 5y )3

= 8x3 - 125y3

15 tháng 10 2020

a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)

Dấu "=" xay ra khi \(x=y=z\)

b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)

\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)

\(=\frac{2}{3}\left(x+y+z\right)^2=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

15 tháng 10 2020

Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))

a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx

<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )

<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0

<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )

Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z

=> ( * ) đúng 

=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z

b. Xài Cauchy cho mới

( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9

<=> 3 ( x2 + y2 + z2 )\(\ge\)

<=> x2 + y2 + z2\(\ge\)3

Dấu "=" xảy ra <=> x = y = z = 1

Vậy minA = 3 <=> x = y = z = 1

c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9

<=> xy + yz + zx\(\le\)3

Dấu "=" xảy ra <=> x = y = 1

Vậy maxB = 3 <=> x = y = 1

d. x + y + z = 3 . BP 2 vế ta được

x2 + y2 + z2 + 2( xy + yz + zx ) = 9

Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )

=> A + B \(\ge\)6

Dấu "=" xảy ra <=> x = y = z = 1

Vậy min A + B = 6 <=> x = y = z = 1

15 tháng 10 2020

( x + 2 ) ( x2 - 2x ) - 3x - 6

= ( x + 2 ) ( x2 - 2x ) - ( 3x + 6 )

= ( x + 2 ) ( x2 - 2x ) - 3 ( x + 2 )

= ( x + 2 ) ( x2 - 2x - 3 )

= ( x + 2 ) [ ( x2 + x ) - ( 3x + 3 ) ]

= ( x + 2 ) [ x ( x + 1 ) - 3 ( x + 1 ) ]

= ( x + 2 ) ( x - 3 ) ( x + 1 ) 

15 tháng 10 2020

( x + 2 )( x2 - 2x ) - 3x - 6

= ( x + 2 )( x2 - 2x ) - 3( x + 2 )

= ( x + 2 )( x2 - 2x - 3 )

= ( x + 2 )[ ( x2 - 2x + 1 ) - 4 ]

= ( x + 2 )[ ( x - 1 )2 - 22 ]

= ( x + 2 )( x - 1 - 2 )( x - 1 + 2 )

= ( x + 2 )( x - 3 )( x + 1 )

15 tháng 10 2020

\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow x^2a^2+x^2b^2+x^2c^2+y^2a^2+y^2b^2+y^2c^2+z^2a^2+z^2b^2+z^2c^2\)\(-\left(a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz\right)=0\)

\(\Leftrightarrow x^2a^2+x^2b^2+x^2c^2+y^2a^2+y^2b^2+y^2c^2+z^2a^2+z^2b^2+z^2c^2\)\(-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz=0\)

\(\Leftrightarrow x^2b^2+x^2c^2+y^2a^2+y^2c^2+z^2a^2+z^2b^2-2axby-2axcz-2bycz=0\)

\(\Leftrightarrow\left(x^2b^2-2axby+y^2a^2\right)+\left(x^2c^2-2axcz+z^2a^2\right)+\left(y^2c^2-2bycz+z^2b^2\right)=0\)

\(\Leftrightarrow\left(xb-ya\right)^2+\left(xc-za\right)^2+\left(yc-zb\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(xb-ya\right)^2=0\\\left(xc-za\right)^2=0\\\left(yc-zb\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}xb-ya=0\\xc-za=0\\yc-zb=0\end{cases}\Rightarrow}\hept{\begin{cases}xb=ya\\xc=za\\yc=zb\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{a}=\frac{y}{b}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{z}{c}\end{cases}}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

15 tháng 10 2020

3x2 + y2 + 10x - 2xy + 2021 = 0

<=> ( x2 - 2xy + y2 ) + ( 2x2 + 10x +\(\frac{25}{2}\)) +\(\frac{4017}{2}\)= 0

<=> ( x - y )2 + 2 ( x +\(\frac{5}{2}\))2 +\(\frac{4017}{2}\)= 0

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\2\left(x+\frac{5}{2}\right)^2\ge0\end{cases}}\forall x\)=> ( x - y )2 + 2 ( x +\(\frac{5}{2}\))2 +\(\frac{4017}{2}\)\(\ge\frac{4017}{2}\)

=> Không có giá trị x ; y thỏa mãn pt trên

15 tháng 10 2020

3x2 + y2 + 10x - 2xy + 2021 = 0

<=> ( x2 - 2xy + y2 ) + ( 2x2 + 10x + 25/2 ) + 4017/2 = 0

<=> ( x - y )2 + 2( x2 + 5x + 25/4 ) + 4017/2 = 0

<=> ( x - y )2 + 2( x + 5/2 )2 + 4017/2 = 0 (*)

Ta có : \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\2\left(x+\frac{5}{2}\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-y\right)^2+2\left(x+\frac{5}{2}\right)^2+\frac{4017}{2}\ge\frac{4017}{2}>0\forall x,y\)

Tức là (*) sai

=> Không có giá trị x, y thỏa mãn

15 tháng 10 2020

Ta có :

Nghiệm của x2 + x - 2 là x = 1 và x = -2

=> Để x3 + ax + b chia hết cho x2 + x - 2

thì x3 + ax + b cũng nhận x = 1 và x = -2 làm nghiệm

+) Với x = 1

Thế vào x3 + ax + b ta được 

13 + a.1 + b = 0

=> 1 + a + b = 0

=> a + b = -1 (1)

+) Với x = -2 

Thế vào x3 + ax + b ta được

(-2)3 + a.(-2) + b = 0

<=> -8 - 2a + b = 0

<=> -8 = 2a - b (2)

Từ (1) và (2) => \(\hept{\begin{cases}a+b=-1\\2a-b=-8\end{cases}}\)

Lấy (1) cộng (2) theo vế => 3a = -9 => a = -3

Thế a = -3 vào (1) => -3 + b = -1 => b = 2

Vậy \(\hept{\begin{cases}a=-3\\b=2\end{cases}}\)

15 tháng 10 2020

Hoặc là dùng cách này

Ta có : x3 + ax + b có bậc 3

           x2 + x - 2 có bậc là 2

=> Thương là một đa thức bậc 1

Giả sử đa thức thương đó là x + c + d

=> x3 + ax + b chia hết cho x2 + x - 2

khi và chỉ khi  x3 + ax + b = ( x2 + x - 2 )( x + c + d )

                <=> x3 + ax + b = x3 + cx2 + dx2 + x2 + cx + dx - 2x - 2c - 2d

                <=> x3 + ax + b = x3 + x2( c + d + 1 ) + x( c + d - 2 ) - ( 2c + 2d )

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}c+d+1=0\\c+d-2=a\\2c+2d=-b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=2\end{cases}}\)

Vậy a = -3 ; b = 2