1, Phân tích đa thức thành nhân tử
a, 4.x^2 - 12.x.y + 5.y^2
b, (x + y + 2.z)^2 + (x + y - z)^2 - 9.z^2
c, x^4 + 2019.x^2 + 2018.x + 2019
d, a^3 - b^3 + c^3 + 3.a.b.c
e, a^3 - b^3 - c^3 - 3.a.b.c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3+x^2y-3x^2+xy+y^2-4y-x+3
=(x^3+x^2y-3x^2)+(xy+y^2-3y)-(x+y-3)
=x^2(x+y-3)+y(x+y-3)-(x+y-3)
=(x+y-3)(x^2+y-1)
=0(x^2+y-1) ( vì x+y=3)
chúc bạn học tốt
a, \(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)
b, \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\)
c, \(x^{16}-1=\left(x^2\right)^8-1=\left[\left(x^2\right)^4\right]^2-1=\left(x^8-1\right)\left(x^8+1\right)\)
\(x\cdot x\cdot x+2y\left(x+1\right)+1\)
\(x^3+2xy+y+1\)
\(x\left(x^2+2y+y\right)+1\)
chỉ bt chừng đó thôi
a - b = 6
=> ( a - b )2 = 36
=> a2 - 2ab + b2 = 36
<=> a2 + 2ab + b2 - 4ab = 36
<=> ( a + b )2 - 4.16 = 36
<=> ( a + b )2 = 100
<=> a + b = ±10
A = x2 - 3x + 5 ( x2 chứ nhể )
= ( x2 - 3x + 9/4 ) + 11/4
= ( x - 3/2 )2 + 11/4 ≥ 11/4 ∀ x
Dấu "=" xảy ra <=> x = 3/2
=> MinA = 11/4 <=> x = 3/2
B = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Dấu "=" xảy ra khi x = 0
=> MinB = 5 <=> x = 0
A = x6 - 2x4 + x3 + x2 - x
= x6 - x4 - x4 + x3 + x2 - x
= ( x6 - x4 ) - ( x4 - x2 ) + ( x3 - x )
= x3( x3 - x ) - x( x3 - x ) + ( x3 - x )
= ( x3 - x )( x3 - x + 1 )
= 6( 6 + 1 )
= 6.7 = 42