Tìm x
a) 3 mũ x=243
b) 2 mũ x .4=128
c)5 mũ x -15=110
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+2,8\right)+\left(x+4,5\right)+\left(x+2,7\right)=27,5\\ \Leftrightarrow\left(x+x+x\right)+\left(2,8+4.5+2,7\right)=27,5\\ \Leftrightarrow3x+9=27,5\\ \Leftrightarrow3x=18,5\\ \Leftrightarrow x=\dfrac{37}{6}\\ b,\left(2,4+x\right)+\left(2,6+x\right)+\left(2,8+x\right)+...+\left(4,2+x\right)=150,66\\ \Leftrightarrow10x+\left(2,4+4,2\right):2.10=150,66\\ \Leftrightarrow10x+33=150,66\\ \Leftrightarrow10x=117,66\\ \Leftrightarrow x=11,766\)
Đặt A = -5+52-53+54-...-52017+52018
=>5A = -52+53-54+55-...-52018+52019
=> 5A+A=(-52+53-54+55-...+52019)+(-5+52-53+54-...+52018)
=> 6A = 52019-5
=> A = \(\dfrac{5^{2019}-5}{6}\)
Ta có :
B = 1+32+34+...+32018
=> 32B=32+34+36+...+32020
=> 32B-B=(32+34+36+...+32020)-(1+32+34+...+32018)
=> 8B=32020-1
=> \(B=\dfrac{3^{2020}-1}{8}\)
Ta có :
A = 2+2+22+23+...+22017
=> 2A=4+22+23+24+...+22018
=> 2A-A=(4+22+23+24+...+22018)-(2+2+22+...+22017)
=> A=22018
Ta có :
A = 1+3+32+33+...+32000 ( có tất cả 2001 số hạng )
=> A = (1+3+32)+(33+34+35)+...+(31998+31999+32000) ( có đủ 667 nhóm )
=> A = (1+3+32)+33.(1+3+32)+...+31998.(1+3+32)
=> A = 13+33.13+...+31998.13
=> A = 13.(1+33+...+31998) ⋮ 13
\(20^{3x}=20^{13}:\left(4.5\right)^4\)
\(\Rightarrow20^{3x}=20^{13}:20^4\)
\(\Rightarrow20^{3x}=20^9\)
`=>3x=9`
`=>x=3`
203x=2013:(4.5)4
=> 203x=2013:204
=> 203x=209
=> 3x = 9
=> x = 3
a) 85-(14+3x):5=81
=> (14+3x):5=85-81=4
=> 14+3x=20
=> 3x=6
=> x=2
b) 49+{40-3.[16-81:33]}
= 49+[40-3.(16-81:27)]
=49+[40-3.(16-3)]
= 49+(40-3.13)
= 49 + (40 - 39)
= 49 + 1 = 50
c) (x-6)2=16
=> (x-6)2=42
=> x-6=4
=> x=10
d) 3x+2-3x=72
=> 2=72 => Đề sai
`@`\(85-\left(14+3x\right):5=81\)
\(\Rightarrow\left(14+3x\right):5=4\)
\(\Rightarrow14+3x=20\)
`=>3x=6`
`=>x=2`
`@`\(\left(x-6\right)^2=16\)
`=>(x-6)^2=4^2`
\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)
`@`\(3^{x+2}-3^x=72\)
\(\Rightarrow3^x.9-3^x=72\)
\(\Rightarrow3^x\left(9-1\right)=72\)
\(\Rightarrow3^x.8=72\)
\(\Rightarrow3^x=9\)
\(\Rightarrow x=2\)
Đặt \(S=1+2+2^2+...+2^{2012}\)
=> \(2S=2+2^2+2^3+...+2^{2013}\)
\(2S-S=2^{2013}-1=S\)
Biểu thức ban đầu có dạng:
\(\dfrac{2^{2013}-1}{2^{2014}\times2}=\dfrac{2^{2013}-1}{2^{2015}}\)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
a) 3x = 243
=> 3x = 35
=> x = 5
b) 2x.4 = 128
=> 2x = 32
=> 2x = 25
=> x = 5
c) 5x - 15 = 110
=> 5x = 125
=> 5x = 53
=> x = 3
a) 3 mũ 5 = 243
b) 2 mũ 5.4=128
c)5 mũ 3 -15=110